DOI QR코드

DOI QR Code

Anti-Inflammatory Activities of (+)-Afzelechin against Lipopolysaccharide-Induced Inflammation

  • In-Chul Lee (Department of Cosmetic Science and Technology, Seowon University) ;
  • Jong-Sup Bae (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
  • Received : 2023.11.16
  • Accepted : 2023.12.07
  • Published : 2024.07.01

Abstract

In this study, we investigated the potential protective effects of (+)-afzelechin (AZC), a natural compound that is derived from Bergenia ligulata, on lipopolysaccharide (LPS)-induced inflammatory responses. AZC is known to have antioxidant, anticancer, antimicrobial, and cardiovascular protective properties. However, knowledge regarding the therapeutic potential of AZC against LPS-induced inflammatory responses is limited. Thus, we investigated the protective attributes of AZC against inflammatory damage caused by LPS exposure. We examined the effects of AZC on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in LPS-activated human umbilical vein endothelial cells (HUVECs). In addition, the effects of AZC on the expression of iNOS, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were analyzed in the lung tissues of LPS-injected mice. Data revealed that AZC promoted the production of HO-1, inhibited the interaction between luciferase and nuclear factor (NF)-κB, and reduced the levels of COX-2/PGE2 and iNOS/NO, thereby leading to a decrease in the signal transducer and activator of transcription (STAT)-1 phosphorylation. Moreover, AZC facilitated the nuclear translocation of Nrf2, increased the binding activity between Nrf2 and the antioxidant response elements (AREs), and lowered the expression of IL-1β in the LPS-treated HUVECs. In the animal model, AZC significantly reduced the expression of iNOS in the lung tissue structure and the TNF-α level in the bronchoalveolar lavage fluid. These findings demonstrate that AZC possesses anti-inflammatory properties that regulate iNOS through the inhibition of both NF-κB expression and p-STAT-1. Consequently, AZC has potential as a future candidate for the development of new clinical substances for the treatment of pathological inflammation.

Keywords

References

  1. Ahmed, S. M., Luo, L., Namani, A., Wang, X. J. and Tang, X. (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta. Mol. Basis Dis. 1863, 585-597. https://doi.org/10.1016/j.bbadis.2016.11.005
  2. Chau, L. Y. (2015) Heme oxygenase-1: emerging target of cancer therapy. J. Biomed. Sci. 22, 22.
  3. Druszczynska, M., Godkowicz, M., Kulesza, J., Wawrocki, S. and Fol, M. (2022) Cytokine receptors-regulators of antimycobacterial immune response. Int. J. Mol. Sci. 23, 1112.
  4. Gaddi, A., Cicero, A. F. and Pedro, E. J. (2004) Clinical perspectives of anti-inflammatory therapy in the elderly: the lipoxigenase (LOX)/cycloxigenase (COX) inhibition concept. Arch. Gerontol. Geriatr. 38, 201-212. https://doi.org/10.1016/j.archger.2003.10.001
  5. Garimella, T. S., Jolly, C. I. and Narayanan, S. (2001) In vitro studies on antilithiatic activity of seeds of Dolichos biflorus Linn. and rhizomes of Bergenia ligulata Wall. Phytother. Res. 15, 351-355. https://doi.org/10.1002/ptr.833
  6. Jeong, S. Y., Kim, M., Park, E. K., Kim, J.-S., Hahn, D. and Bae, J.-S. (2020) Inhibitory functions of novel compounds from Dioscorea batatas decne peel on HMGB1-mediated septic responses. Biotechnol. Bioproc. Eng. 25, 1-8. https://doi.org/10.1007/s12257-019-0382-1
  7. Kim, C., Ryu, S. H., Kim, N., Lee, W. and Bae, J.-S. (2022) Renal protective effects of Sparstolonin B in a mouse model of sepsis. Biotechnol. Bioproc. Eng. 27, 157-162. https://doi.org/10.1007/s12257-021-0319-3
  8. Kim, J. E., Lee, W., Yang, S., Cho, S. H., Baek, M. C., Song, G. Y. and Bae, J. S. (2019) Suppressive effects of rare ginsenosides, Rk1 and Rg5, on HMGB1-mediated septic responses. Food Chem. Toxicol. 124, 45-53. https://doi.org/10.1016/j.fct.2018.11.057
  9. Lee, I.-C. and Bae, J.-S. (2022) Hepatic protective effects of jujuboside B through the modulation of inflammatory pathways. Biotechnol. Bioproc. Eng. 27, 336-343. https://doi.org/10.1007/s12257-022-0049-1
  10. Lee, I.-C., Ryu, C.-W. and Bae, J.-S. (2020a) Novel herbal medicine C-KOK suppresses the inflammatory gene iNOS via the inhibition of p-STAT-1 and NF-κB. Biotechnol. Bioproc. Eng. 25, 536-542. https://doi.org/10.1007/s12257-020-0126-2
  11. Lee, W., Kim, J., Park, E. K. and Bae, J. S. (2020b) Maslinic acid ameliorates inflammation via the downregulation of NF-kappaB and STAT-1. Antioxidants (Basel) 9, 106.
  12. Lee, W., Ku, S. K., Kim, J. E., Cho, G. E., Song, G. Y. and Bae, J. S. (2019) Pulmonary protective functions of rare ginsenoside Rg4 on particulate matter-induced inflammatory responses. Biotechnol. Bioproc. Eng. 24, 445-453. https://doi.org/10.1007/s12257-019-0096-4
  13. Liu, H., Yu, X., Yu, S. and Kou, J. (2015) Molecular mechanisms in lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Int. Immunopharmacol. 29, 937-946. https://doi.org/10.1016/j.intimp.2015.10.010
  14. McInnes, I. B. and Schett, G. (2011) The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205-2219. https://doi.org/10.1056/NEJMra1004965
  15. Raghunath, A., Sundarraj, K., Nagarajan, R., Arfuso, F., Bian, J., Kumar, A. P., Sethi, G. and Perumal, E. (2018) Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 17, 297-314. https://doi.org/10.1016/j.redox.2018.05.002
  16. Saijyo, J., Suzuki, Y., Okuno, Y., Yamaki, H., Suzuki, T. and Miyazawa, M. (2008) α-Glucosidase inhibitor from Bergenia ligulata. J. Oleo Sci. 57, 431-435. https://doi.org/10.5650/jos.57.431
  17. Tsoyi, K., Kim, H. J., Shin, J. S., Kim, D. H., Cho, H. J., Lee, S. S., Ahn, S. K., Yun-Choi, H. S., Lee, J. H., Seo, H. G. and Chang, K. C. (2008) HO-1 and JAK-2/STAT-1 signals are involved in preferential inhibition of iNOS over COX-2 gene expression by newly synthesized tetrahydroisoquinoline alkaloid, CKD712, in cells activated with lipopolysacchride. Cell. Signal. 20, 1839-1847. https://doi.org/10.1016/j.cellsig.2008.06.012
  18. Tsoyi, K., Lee, T. Y., Lee, Y. S., Kim, H. J., Seo, H. G., Lee, J. H. and Chang, K. C. (2009) Heme-oxygenase-1 induction and carbon monoxide-releasing molecule inhibit lipopolysaccharide (LPS)-induced high-mobility group box 1 release in vitro and improve survival of mice in LPS- and cecal ligation and puncture-induced sepsis model in vivo. Mol. Pharmacol. 76, 173-182. https://doi.org/10.1124/mol.109.055137
  19. Tsoyi, K., Nizamutdinova, I. T., Jang, H. J., Mun, L., Kim, H. J., Seo, H. G., Lee, J. H. and Chang, K. C. (2010) Carbon monoxide from CORM-2 reduces HMGB1 release through regulation of IFN-beta/JAK2/STAT-1/INOS/NO signaling but not COX-2 in TLR-activated macrophages. Shock 34, 608-614. https://doi.org/10.1097/SHK.0b013e3181e46f15
  20. Waza, A. A., Hamid, Z., Ali, S., Bhat, S. A. and Bhat, M. A. (2018) A review on heme oxygenase-1 induction: is it a necessary evil. Inflam. Res. 67, 579-588. https://doi.org/10.1007/s00011-018-1151-x
  21. Wullaert, A., Bonnet, M. C. and Pasparakis, M. (2011) NF-kappaB in the regulation of epithelial homeostasis and inflammation. Cell Res. 21, 146-158.
  22. Yu, H., Lin, L., Zhang, Z., Zhang, H. and Hu, H. (2020) Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct. Target Ther. 5, 209.