DOI QR코드

DOI QR Code

Structure-Activity Relationship and Functional Evaluation of Cannabinoid Type-1 Receptor

  • Shujie Wang (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Xinru Tian (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Suresh Paudel (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Sungho Ghil (Department of Life Science, Kyonggi University) ;
  • Choon-Gon Jang (Pharmacology Laboratory, College of Pharmacy, Sungkyunkwan University) ;
  • Kyeong-Man Kim (Pharmacology Laboratory, College of Pharmacy, Chonnam National University)
  • Received : 2023.11.17
  • Accepted : 2023.12.26
  • Published : 2024.07.01

Abstract

The type-1 cannabinoid receptor (CB1R) is a potential therapeutic target in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Owing to their structural diversity, it is not easy to derive general structure-activity relationships (SARs) for CB1R ligands. In this study, CB1R ligands were classified into six structural families, and the corresponding SAR was determined for their affinities for CB1R. In addition, we determined their functional activities for the activation of extracellular signal-regulated kinases (ERKs). Among derivatives of indol-3-yl-methanone, the highest ligand affinity was observed when a pentyl and a naphthalenyl group were attached to the N1 position of the indole ring and the carbon site of the methanone moiety, respectively. In the case of adamantane indazole-3-carboxamide derivatives, the presence of fluorine in the pentyl group, the substituent at the N1 position of the indazole ring, strongly increased the affinity for CB1R. For (naphthalen-1-yl) methanone derivatives, the presence of 4-alkoxynaphthalene in the methanone moiety was more beneficial for the affinity to CB1R than that of a heterocyclic ring. The functional activities of the tested compounds, evaluated through ERK assay, were correlated with their affinity for CB1R, suggesting their agonistic nature. In conclusion, this study provides valuable insight for designing novel ligands for CB1R, which can be used to control psychiatric disorders and drug abuse.

Keywords

Acknowledgement

This research was supported by the Ministry of Food and Drug Safety (19182MFDS403) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2023-00239943).

References

  1. Aung, M. M., Griffin, G., Huffman, J. W., Wu, M., Keel, C., Yang, B., Showalter, V. M., Abood, M. E. and Martin, B. R. (2000) Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB(1) and CB(2) receptor binding. Drug Alcohol Depend. 60, 133-140. https://doi.org/10.1016/S0376-8716(99)00152-0
  2. Banister, S. D., Stuart, J., Kevin, R. C., Edington, A., Longworth, M., Wilkinson, S. M., Beinat, C., Buchanan, A. S., Hibbs, D. E., Glass, M., Connor, M., Mcgregor, I. S. and Kassiou, M. (2015) Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem. Neurosci. 6, 1445-1458. https://doi.org/10.1021/acschemneuro.5b00107
  3. Bisogno, T., Melck, D., Bobrov, M., Gretskaya, N. M., Bezuglov, V. V., De Petrocellis, L. and Di Marzo, V. (2000) N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem. J. 351 Pt 3, 817-824. https://doi.org/10.1042/bj3510817
  4. Breivogel, C. S. and Childers, S. R. (2000) Cannabinoid agonist signal transduction in rat brain: comparison of cannabinoid agonists in receptor binding, G-protein activation, and adenylyl cyclase inhibition. J. Pharmacol. Exp. Ther. 295, 328-336.
  5. Calandra, B., Portier, M., Kerneis, A., Delpech, M., Carillon, C., Le Fur, G., Ferrara, P. and Shire, D. (1999) Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor. Eur. J. Pharmacol. 374, 445-455. https://doi.org/10.1016/S0014-2999(99)00349-0
  6. De Vry, J., Denzer, D., Reissmueller, E., Eijckenboom, M., Heil, M., Meier, H. and Mauler, F. (2004) 3-[2-cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 59-3074): a novel cannabinoid Cb1/Cb2 receptor partial agonist with antihyperalgesic and antiallodynic effects. J. Pharmacol. Exp. Ther. 310, 620-632. https://doi.org/10.1124/jpet.103.062836
  7. Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A. and Mechoulam, R. (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946-1949. https://doi.org/10.1126/science.1470919
  8. Di Marzo, V., Griffin, G., De Petrocellis, L., Brandi, I., Bisogno, T., Williams, W., Grier, M. C., Kulasegram, S., Mahadevan, A., Razdan, R. K. and Martin, B. R. (2002) A structure/activity relationship study on arvanil, an endocannabinoid and vanilloid hybrid. J. Pharmacol. Exp. Ther. 300, 984-991. https://doi.org/10.1124/jpet.300.3.984
  9. Dziadulewicz, E. K., Bevan, S. J., Brain, C. T., Coote, P. R., Culshaw, A. J., Davis, A. J., Edwards, L. J., Fisher, A. J., Fox, A. J., Gentry, C., Groarke, A., Hart, T. W., Huber, W., James, I. F., Kesingland, A., La Vecchia, L., Loong, Y., Lyothier, I., Mcnair, K., O'farrell, C., Peacock, M., Portmann, R., Schopfer, U., Yaqoob, M. and Zadrobilek, J. (2007) Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic properties and restricted central nervous system penetration. J. Med. Chem. 50, 3851-3856. https://doi.org/10.1021/jm070317a
  10. Frost, J. M., Dart, M. J., Tietje, K. R., Garrison, T. R., Grayson, G. K., Daza, A. V., El-Kouhen, O. F., Yao, B. B., Hsieh, G. C., Pai, M., Zhu, C. Z., Chandran, P. and Meyer, M. D. (2010) Indol-3-ylcycloalkyl ketones: effects of N1 substituted indole side chain variations on CB(2) cannabinoid receptor activity. J. Med. Chem. 53, 295-315. https://doi.org/10.1021/jm901214q
  11. Galiegue, S., Mary, S., Marchand, J., Dussossoy, D., Carriere, D., Carayon, P., Bouaboula, M., Shire, D., Le Fur, G. and Casellas, P. (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 232, 54-61. https://doi.org/10.1111/j.1432-1033.1995.tb20780.x
  12. Gamage, T. F., Barrus, D. G., Kevin, R. C., Finlay, D. B., Lefever, T. W., Patel, P. R., Grabenauer, M. A., Glass, M., Mcgregor, I. S., Wiley, J. L. and Thomas, B. F. (2020) In vitro and in vivo pharmacological evaluation of the synthetic cannabinoid receptor agonist EG-018. Pharmacol. Biochem. Behav. 193, 172918. https://doi.org/10.1016/j.pbb.2020.172918
  13. Gerard, C., Mollereau, C., Vassart, G. and Parmentier, M. (1990) Nucleotide sequence of a human cannabinoid receptor cDNA. Nucleic Acids Res. 18, 7142.
  14. Glass, M. and Felder, C. C. (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J. Neurosci. 17, 5327-5333. https://doi.org/10.1523/JNEUROSCI.17-14-05327.1997
  15. Hill, A. J., Williams, C. M., Whalley, B. J. and Stephens, G. J. (2012) Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol. Ther. 133, 79-97. https://doi.org/10.1016/j.pharmthera.2011.09.002
  16. Howlett, A. C., Barth, F., Bonner, T. I., Cabral, G., Casellas, P., Devane, W. A., Felder, C. C., Herkenham, M., Mackie, K., Martin, B. R., Mechoulam, R. and Pertwee, R. G. (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 54, 161-202. https://doi.org/10.1124/pr.54.2.161
  17. Howlett, A. C., Qualy, J. M. and Khachatrian, L. L. (1986) Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol. Pharmacol. 29, 307-313.
  18. Huffman, J. W., Zengin, G., Wu, M. J., Lu, J., Hynd, G., Bushell, K., Thompson, A. L., Bushell, S., Tartal, C., Hurst, D. P., Reggio, P. H., Selley, D. E., Cassidy, M. P., Wiley, J. L. and Martin, B. R. (2005) Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB(1) and CB(2) receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB(2) receptor agonists. Bioorg. Med. Chem. 13, 89-112. https://doi.org/10.1016/j.bmc.2004.09.050
  19. Izzo, A. A., Borrelli, F., Capasso, R., Di Marzo, V. and Mechoulam, R. (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci. 30, 515-527. https://doi.org/10.1016/j.tips.2009.07.006
  20. Jarbe, T. U., Deng, H., Vadivel, S. K. and Makriyannis, A. (2011) Cannabinergic aminoalkylindoles, including AM678=JWH018 found in 'Spice', examined using drug (delta(9)-tetrahydrocannabinol) discrimination for rats. Behav. Pharmacol. 22, 498-507. https://doi.org/10.1097/FBP.0b013e328349fbd5
  21. Lupica, C. R. and Riegel, A. C. (2005) Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology 48, 1105-1116. https://doi.org/10.1016/j.neuropharm.2005.03.016
  22. Mackie, K. (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb. Exp. Pharmacol. (168), 299-325.
  23. Maneuf, Y. P. and Brotchie, J. M. (1997) Paradoxical action of the cannabinoid WIN 55,212-2 in stimulated and basal cyclic AMP accumulation in rat globus pallidus slices. Br. J. Pharmacol. 120, 1397-1398. https://doi.org/10.1038/sj.bjp.0701101
  24. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. and Bonner, T. I. (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561-564. https://doi.org/10.1038/346561a0
  25. Mcgaraughty, S., Chu, K. L., Dart, M. J., Yao, B. B. and Meyer, M. D. (2009) A CB(2) receptor agonist, A-836339, modulates wide dynamic range neuronal activity in neuropathic rats: contributions of spinal and peripheral CB(2) receptors. Neuroscience 158, 1652-1661. https://doi.org/10.1016/j.neuroscience.2008.11.015
  26. Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A. R., Gopher, A., Almog, S., Martin, B. R., Compton, D. R., Pertwee, R. G., Griffin, G., Bayewitch, M., Barg, J. and Vogel, Z. (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83-90.
  27. Melck, D., Bisogno, T., De Petrocellis, L., Chuang, H., Julius, D., Bifulco, M. and Di Marzo, V. (1999) Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. Biochem. Biophys. Res. Commun. 262, 275-284. https://doi.org/10.1006/bbrc.1999.1105
  28. Merrill, C. B., Friend, L. N., Newton, S. T., Hopkins, Z. H. and Edwards, J. G. (2015) Ventral tegmental area dopamine and GABA neurons: physiological properties and expression of mRNA for endocannabinoid biosynthetic elements. Sci. Rep. 5, 16176.
  29. Min, X., Sun, N., Wang, S., Zhang, X. and Kim, K. M. (2023) Sequestration of Gbetagamma by deubiquitinated arrestins into the nucleus as a novel desensitization mechanism of G protein-coupled receptors. Cell Commun. Signal. 21, 11.
  30. Munro, S., Thomas, K. L. and Abu-Shaar, M. (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61-65. https://doi.org/10.1038/365061a0
  31. Patil, K. R., Goyal, S. N., Sharma, C., Patil, C. R. and Ojha, S. (2015) Phytocannabinoids for cancer therapeutics: recent updates and future prospects. Curr. Med. Chem. 22, 3472-3501. https://doi.org/10.2174/0929867322666150716115057
  32. Pertwee, R. G., Howlett, A. C., Abood, M. E., Alexander, S. P., Di Marzo, V., Elphick, M. R., Greasley, P. J., Hansen, H. S., Kunos, G., Mackie, K., Mechoulam, R. and Ross, R. A. (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB(1) and CB(2). Pharmacol. Rev. 62, 588-631. https://doi.org/10.1124/pr.110.003004
  33. Riegel, A. C. and Lupica, C. R. (2004) Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area. J. Neurosci. 24, 11070-11078. https://doi.org/10.1523/JNEUROSCI.3695-04.2004
  34. Rinaldi-Carmona, M., Barth, F., Heaulme, M., Shire, D., Calandra, B., Congy, C., Martinez, S., Maruani, J., Neliat, G., Caput, D., Ferrara, P., Soubrie, P., Breliere, J. C. and Le Fur, G. (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 350, 240-244. https://doi.org/10.1016/0014-5793(94)00773-X
  35. Schoeder, C. T., Hess, C., Madea, B., Meiler, J. and Muller, C. E. (2018) Pharmacological evaluation of new constituents of "Spice": synthetic cannabinoids based on indole, indazole, benzimidazole and carbazole scaffolds. Forensic Toxicol. 36, 385-403. https://doi.org/10.1007/s11419-018-0415-z
  36. Sugiura, T., Kodaka, T., Kondo, S., Tonegawa, T., Nakane, S., Kishimoto, S., Yamashita, A. and Waku, K. (1996) 2-Arachidonoylglycerol, a putative endogenous cannabinoid receptor ligand, induces rapid, transient elevation of intracellular free Ca2+ in neuroblastoma x glioma hybrid NG108-15 cells. Biochem. Biophys. Res. Commun. 229, 58-64. https://doi.org/10.1006/bbrc.1996.1757
  37. Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., Yamashita, A. and Waku, K. (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89-97. https://doi.org/10.1006/bbrc.1995.2437
  38. Szabo, B., Siemes, S. and Wallmichrath, I. (2002) Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur. J. Neurosci. 15, 2057-2061. https://doi.org/10.1046/j.1460-9568.2002.02041.x
  39. Wiley, J. L., Marusich, J. A., Lefever, T. W., Antonazzo, K. R., Wallgren, M. T., Cortes, R. A., Patel, P. R., Grabenauer, M., Moore, K. N. and Thomas, B. F. (2015) AB-CHMINACA, AB-PINACA, and FUBIMINA: affinity and potency of novel synthetic cannabinoids in producing delta9-tetrahydrocannabinol-like effects in mice. J. Pharmacol. Exp. Ther. 354, 328-339. https://doi.org/10.1124/jpet.115.225326