DOI QR코드

DOI QR Code

Evolution of concrete encased - CFST column: A comprehensive review on structural behavior and performance characteristics

  • Namitha Raveendran (School of Civil Engineering, Vellore Institute of Technology Chennai-campus) ;
  • Vasugi K (School of Civil Engineering, Vellore Institute of Technology Chennai-campus)
  • Received : 2023.08.03
  • Accepted : 2024.05.30
  • Published : 2024.06.25

Abstract

In the construction industry, composite structures have revolutionized traditional design principles, opening innovative possibilities. The Concrete Encased - Concrete Filled Steel Tubular (CE-CFST) column stands out as a distinctive composite structure, offering structural stability and resilience for various engineering applications. Comprising Reinforced Concrete (RC) and Concrete Filled Steel Tubular (CFST) components, CE-CFST columns are valued for their inherent properties, including ductility and rigidity, CE-CFST is commonly used in the construction of bridges, high-rise buildings, and more. This article aims to provide a concise overview of the evolutionary development of CE-CFST columns and their performance in structural applications. Through a comprehensive review, the study delves into the behaviour of CE-CFST columns under different scenarios. It examines the influences of key parameters such as size, infills, cross section, failure causes, and design codes on the performance of CE-CFST columns, highlighting their enhanced functionality and future potential. Moreover, the review meticulously examines previous applications of CE-CFST columns, offering insights into their practical implementation.

Keywords

Acknowledgement

Authors like to acknowledge the Vellore Institute of Technology, Chennai, India for providing support to carry out this comprehensive review.

References

  1. Abd-Elhamed, M.K. and Owida, M.E. (2019), "Effect of stirrups densification on ultimate capacity of rectangular reinforced concrete columns", Struct., 20(June), 728-764. https://doi.org/10.1016/j.istruc.2019.06.016.
  2. Adhikary, S., Li, B. and Fujikake, K. (2015), "Low Velocity impact response of reinforced concrete beams: Experimental and numerical investigation", Int. J. Prot. Struct., 6(1), 81-111. https://doi.org/10.1260/2041-4196.6.1.81.
  3. Ahmed, M., Tran,V.L., Junchang, Ci., Yan, X.F. and Wang, F. (2021), "Computational analysis of axially loaded thin-walled rectangular concrete-filled stainless steel tubular short columns incorporating local buckling effects", Struct., 34(July), 4652-4668. https://doi.org/10.1016/j.istruc.2021.10.068.
  4. Ahmed, M., Ci J., Yan, X.F., Lin, S. and Chen, S. (2021), "Numerical modeling of axially loaded circular concrete-filled double-skin steel tubular short columns incorporating a new concrete confinement model", Struct., 30(November), 611-627. https://doi.org/10.1016/j.istruc.2021.01.044.
  5. Ahmed, M., Liang, Q.Q., Hamoda, A. and Arashpour, A. (2022), "Behavior and design of thin-walled double-skin concrete-filled rectangular steel tubular short and slender columns with external stainless-steel tube incorporating local buckling effects", Thin-Wall. Struct., 170(September 2021), 108552. https://doi.org/10.1016/j.tws.2021.108552.
  6. Alatshan, F., Osman, S.A., Hamid, R. and Mashiri, F. (2020), "Stiffened concrete-filled steel tubes: A systematic review", Thin-Wall. Struct., 148(January), 106590. https://doi.org/10.1016/j.tws.2019.106590
  7. An, Y.F. and Han, L.H. (2014), "Behaviour of concrete-encased CFST columns under combined compression and bending", J. Constr. Steel Res., 101, 314-330. https://doi.org/10.1016/j.jcsr.2014.06.002.
  8. An, Y.F., Han, L.H. and Roeder, C. (2015), "Performance of concrete-encased CFST box stub columns under axial compression", Struct., 3, 211-226. https://doi.org/10.1016/j.istruc.2015.05.001.
  9. An, Y.F., Han, L.H. and Zhao, X.L. (2013), "Experimental behaviour of box concrete-encased cfst eccentrically loaded column", Mag. Concr. Res., 65(20), 1219-1235. https://doi.org/10.1680/macr.13.00067.
  10. An, Y.F., Han, L.H. and Zhao, X.L. (2014), "Analytical behaviour of eccentrically loaded concrete encased CFST box columns", Mag. Concr. Res., 66(15), 789-808. https://doi.org/10.1680/macr.13.00330.
  11. Anas, S.M., Alam, M. and Shariq, M. (2023), "Damage response of conventionally reinforced two-way spanning concrete slab under eccentric impacting drop weight loading", Def. Technol., 19, 12-34. https://doi.org/10.1016/j.dt.2022.04.011.
  12. Autiero, F., Martino, G.D., Ludovico, M.D., Mauro,A. and Prota, A. (2020), "Multidrum stone columns at the pompeii archaeological site: Analysis of geometrical properties and state of preservation", Heritage, 3(4), 1069-1082. https://doi.org/10.3390/heritage3040059.
  13. Ayough, P., Ibrahim, Z., Ramli Sulong, N. H. and Hsiao, P.C. (2021a), "The effects of cross-sectional shapes on the axial performance of concrete-filled steel tube columns", J. Constr. Steel Res., 176, 106424. https://doi.org/10.1016/j.jcsr.2020.106424.
  14. Ayough, P. et al. (2024) 'Numerical investigation and design of UHPC-encased CFST stub columns under axial compression', Eng. Struct., 302(July 2023), 117-387. https://doi.org/10.1016/j.engstruct.2023.117387.
  15. Ayough, P., Wang, Y.H. and Ibrahim, Z. (2023), "Analytical study of concrete - filled steel tubular stub columns with double inner steel tubes", Steel Compos. Struct., 47(5), 645-661. https://doi.org/https://doi.org/10.12989/scs.2023.47.5.645.
  16. Ban, H. and Shi, G. (2017), "A review of research on high-strength steel structures", Proc. Inst. Civ. Eng. Struct. Build., 171(8), 625-641. https://doi.org/10.1680/jstbu.16.00197.
  17. Cai, J., Pan, J., Su, H. and Lu, C. (2018), "Experimental study on the hysteretic behavior of ECC-encased CFST columns", Eng. Struct., 173(March), 107-121. https://doi.org/10.1016/j.engstruct.2018.06.095.
  18. Cai, J., Pan, J., Tan, J., Vandevyvere, B. and Li, X. (2020a), "Behavior of ECC-encased CFST columns under eccentric loading", J. Build. Eng., 30(January), 101188. https://doi.org/10.1016/j.jobe.2020.101188.
  19. Cai, J., Pan, J., Tan, J., Vandevyvere, B. and Li, X. (2020b), "Nonlinear analysis of ECC-encased CFST columns under axial compression", J. Build. Eng., 31(April), 101401. https://doi.org/10.1016/j.jobe.2020.101401.
  20. Cai, J., Pan, J., Tan, J. and Vandevyvere, B. (2020), "Nonlinear finite-element analysis for hysteretic behavior of ECC-encased CFST columns", Struct., 25(April), 670-682. https://doi.org/10.1016/j.istruc.2020.03.036.
  21. Cai, J., Pan, J. and Li, X. (2018), "Behavior of ECC-encased CFST columns under axial compression", Eng. Struct., 171(February), 1-9. https://doi.org/10.1016/j.engstruct.2018.05.090.
  22. Cai, J., Pan, J. and Lu, C. (2018), "Mechanical behavior of ECC-encased CFST columns subjected to eccentric loading", Eng. Struct., 162(February), 22-28. https://doi.org/10.1016/j.engstruct.2018.02.029.
  23. Cai, M., Ke, X. and Xu, D. (2020) "Axial compressive performance of RAC-encased RACFST composite columns", Thin-Wall. Struct., 210(February). https://doi.org/https://doi.org/10.1016/j.engstruct.2020.110393.
  24. Cai, M., Ke, X. and Xu, D. (2021), "Study on axial compressive stiffness of RAC-encased RACFST composite columns", Thin-Wall. Struct., 162(February), 107570. https://doi.org/10.1016/j.tws.2021.107570.
  25. Chang, W.S. (2015), "Repair and reinforcement of timber columns and shear walls - A review", Constr. Build. Mater., 97, 14-24. https://doi.org/10.1016/j.conbuildmat.2015.07.002.
  26. Chen, H., Liao, F., Yang, Y. and Ren, Y. (2023), "Behavior of ultra-high-performance concrete ( UHPC ) encased concrete-filled steel tubular ( CFST ) stub columns under axial compression", J. Constr. Steel Res., 202(December 2022), 107795. https://doi.org/10.1016/j.jcsr.2023.107795.
  27. Chen, J.Y., Li, W., Han, L.H., Wang, F.C. and Mu, T.M. (2019), "Structural behaviour of concrete-encased CFST box stub columns under axial compression", J. Constr. Steel Res., 158, 248-262. https://doi.org/10.1016/j.jcsr.2019.03.021.
  28. Chen, Q., Cai, J., Bradford, M.A., Liu, X. and Zuo, Z.L. (2014), "Seismic behaviour of a through-beam connection between concrete-filled steel tubular columns and reinforced concrete beams", Eng. Fail. Anal., 80(7), 24-39. https://doi.org/http://dx.doi.org/10.1016/j.engstruct.2014.08.036.
  29. Ci, J., Kong, L., Ahmed, M., Liang, Q.Q., Hamoda,A., Chen, S. and Wu. C. (2022), "Experimental and numerical studies of axially loaded square concrete-encased concrete-filled large-diameter steel tubular short columns", Struct. Concr., 23(5), 2748-2769. https://doi.org/10.1002/suco.202100466.
  30. Cihan Y.C.B., Binbir, E., Guzelbulut, C., Yildirim, H. and Celik, O.C. (2023), "Circular concrete-filled double skin steel tubes under concentric compression: Tests and FEA parametric study", Compos. Struct., 309(79), 116765. https://doi.org/10.1016/j.compstruct.2023.116765.
  31. Dong, B. Pan, J., Cai, J. and Xu, L. (2021), "Mechanical behaviour of a new ECC-encased CFST column to RC beam connection under cyclic loading", Eng. Struct., 234(February), 111915. https://doi.org/10.1016/j.engstruct.2021.111915.
  32. Ellobody, E. and Young, B. (2011), "Numerical simulation of concrete encased steel composite columns", J. Constr. Steel Res., 67(2), 211-222. https://doi.org/10.1016/j.jcsr.2010.08.003.
  33. Eurocode 4 (2004), Design of Composite Steel and Concrete Structures - Part 1-1: General Rules and Rules for Buildings Eurocode.
  34. Feng, S., Guan, D., Guo, Z., Liu, Z., Li, G. and Gong, C. (2021), "Seismic performance of assembly joints between HSPC beams and concrete-encased CFST columns", J. Constr. Steel Res., 180, 106572. https://doi.org/https://doi.org/10.1016/j.jcsr.2021.106572.
  35. Gan, D. Li, Z., Yan, B., Zhou, X. and Huang, H. 2022. (2022), "Eccentric compression behaviour of diagonal rib-stiffened thin-walled square concrete filled steel tubes", Thin-Wall. Struct., 173(January), 108991. https://doi.org/10.1016/j.tws.2022.108991.
  36. Gao, S., Peng, Z., Wang, X. and Liu, J. (2019), "Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion", Steel Compos. Struct., 33(4), 615-627. https://doi.org/10.12989/scs.2019.33.4.615.
  37. Gao, X.L. Shen, S.Y., Chen, G.K., Pang, R. and Mao, M. (2023), "Experimental and numerical study on axial compressive behaviors of reinforced UHPC-CFST composite columns", Eng. Struct., 278, 115315. https://doi.org/10.1016/j.engstruct.2022.115315.
  38. Gunawardena, Y.K.R. Aslani, F., Uy, B., Kang, W.H. and Hicks, S. (2019), "Review of strength behaviour of circular concrete filled steel tubes under monotonic pure bending", J. Constr. Steel Res., 158, 460-474. https://doi.org/10.1016/j.jcsr.2019.04.010.
  39. Guo, X.H., Jiao, J.F., Wu, Z.A. and Zhang, J.L. (2020), "Research on the reinforcement mechanism and safety monitoring of heavy-duty concrete-encased CFST columns", Adv. Civ. Eng., 2020, 1-16. https://doi.org/10.1155/2020/7372345.
  40. Han, L.H. Wang, Z.B., Xu, W. and Tao, Z. (2016), "Behavior of concrete-encased CFST members under axial tension", J. Struct. Eng., 142(2), 1-12. https://doi.org/10.1061/(asce)st.1943-541x.0001422.
  41. Han, L.-H., Ma, D.-Y. and Zhou, K. (2018), "Concrete-encased CFST structures: behaviour and application", In 12th International Conference on Advances in Steel-Concrete Composite Structures, 1-10. https://doi.org/10.4995/asccs2018.2018.7109.
  42. Han, L. and Li, W. (2013), "Seismic performance of Concrete-Filled Steel Tubular (CFST) structures", In Seismic Design of Industrial Facilities, 361-368. https://doi.org/10.1007/978-3-658-02810-7.
  43. Han, L.H. (2000), "Influence of concrete compaction on the strength of concrete filled steel tubes", Adv. Struct. Eng., 3(2), 131-137. https://doi.org/10.1260/1369433001502076.
  44. Han, L.H., Huang, H., Tao, Z. and Zhao, X.L. (2006), "Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending", Eng. Struct., 28(12), 1698-1714. https://doi.org/10.1016/j.engstruct.2006.03.004.
  45. Han, L.H., Liao, F.Y., Tao, Z. and Hong, Z. (2009), "Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending", J. Constr. Steel Res., 65(8-9), 1607-1616. https://doi.org/10.1016/j.jcsr.2009.03.013.
  46. Han, L.H., An, Y.F., Roeder, C. and Ren, Q.X. (2015), "Performance of concrete-encased CFST box members under bending", J. Constr. Steel Res., 106, 138-153. https://doi.org/10.1016/j.jcsr.2014.12.011.
  47. Han, L.H. and An, Y.F. (2014), "Performance of concrete-encased CFST stub columns under axial compression", J. Constr. Steel Res., 93, 62-76. https://doi.org/10.1016/j.jcsr.2013.10.019.
  48. Han, L.H., Hou, C.C. and Xu, W. (2018), "Seismic performance of concrete-encased column base for hexagonal concrete-filled steel tube: numerical study", J. Constr. Steel Res., 149, 225-238. https://doi.org/10.1016/j.jcsr.2018.07.006.
  49. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  50. Hasan, H.G., Ekmekyapar, T. and Shehab, B.A. (2019), "Mechanical performances of stiffened and reinforced concrete-filled steel tubes under axial compression", Mar. Struct., 65(December 2018), 417-432. https://doi.org/10.1016/j.marstruc.2018.12.008.
  51. He, F., Li, C., Chen, B., Liu, J., Zhang, M. and Briseghella, B. (2023), "Compressive behavior of concrete-encased CFST column with initial stress", J. Constr. Steel Res., 201(December 2022), 107724. https://doi.org/10.1016/j.jcsr.2022.107724.
  52. Hou, C.C., Han, L.H., Wang, F.C. and Hu, C.M. (2019), "Study on the impact behaviour of concrete-encased CFST box members", Eng. Struct., 198(August), 109536. https://doi.org/10.1016/j.engstruct.2019.109536.
  53. Hou, C.C., Han, L.H., Liang, Z.S. and Hu, C.M. (2021), "Performance of concrete-encased CFST subjected to low-velocity impact: shear resistance analysis", Int. J. Impact Eng., 150(December 2020), 103798. https://doi.org/10.1016/j.ijimpeng.2020.103798.
  54. Hu, C.M., Han, L.H. and Hou, C.C. (2018), "Concrete-encased CFST members with circular sections under laterally low velocity impact: Analytical behaviour", J. Constr. Steel Res., 146, 135-154. https://doi.org/10.1016/j.jcsr.2018.03.017.
  55. Huang, Y.S., Long, Y.L. and Cai, J. (2008), "Ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression", Steel Compos. Struct., 8(2), 115-128. https://doi.org/10.12989/scs.2008.8.2.115.
  56. Husem, M., Nasery, M.M., Okur, F.Y. and Altunisik, A.C. (2018), "Experimental evaluation of damage effect on dynamic characteristics of concrete encased composite column-beam connections", Eng. Fail. Anal., 91(March), 129-150. https://doi.org/10.1016/j.engfailanal.2018.04.030.
  57. Ji, J., Li, Y.H., Jiang, L.Q., Zhang, Y.F., Liu, Y.C., He, L.J., Zhang, Z.B. and Wang,Y. (2023), "Axial compression behavior of strength-gradient composite stub columns encased CFST with small diameter: Experimental and numerical investigation", Struct., 47(November 2022), 282-298. https://doi.org/10.1016/j.istruc.2022.11.069.
  58. Ji, X., Kang, H., Chen, X. and Qian, J. (2013), "Seismic behavior and strength capacity of steel tube-reinforced concrete composite columns", Earthq. Eng. Struct. Dyn., 43(4), 487-505. https://doi.org/https://doi.org/10.1002/eqe.2354.
  59. Ji, X., Zhang, M., Kang, H. Qian, J. and Hu, H. (2014), "Effect of cumulative seismic damage to steel tube-reinforced concrete composite columns", Earthq. Struct., 7(2), 179-199. https://doi.org/10.12989/eas.2014.7.2.179.
  60. Ke, X., Xiang, W., Peng, X. and Dan, Y. (2022), "Axial Compression Performance and Residual Strength Calculation of Concrete-Encased CFST Composite Columns Exposure to High Temperature", Appl. Sci., 12(480). https://doi.org/10.3390/app12010480.
  61. Ke, X., Wei, H., Yang, L. and Sun, H. (2023), "Analysis and calculation method for concrete-encased CFST columns under eccentric compression", J. Constr. Steel Res., 206(November 2022), 107927. https://doi.org/10.1016/j.jcsr.2023.107927.
  62. Ke, X., Xu, D. and Cai, M. (2020) "Experimental and numerical study on the eccentric compressive performance of RAC-encased RACFST composite columns", Eng. Struct., 224 (May), 111-227. https://doi.org/10.1016/j.engstruct.2020.111227.
  63. Khodaie, N. (2013), "Effect of the concrete strength on the concrete-steel bond in concrete filled steel tubes", J. Persian Gulf 4(11), 9-16. http://jpg.inio.ac.ir/article-1-160-en.html.
  64. Krishan, A.L., Troshkina, E.A. and Astafyeva, M.A. (2017), "Strength of short concrete filled steel tube columns with spiral reinforcement", IOP Conference Series: Materials Science and Engineering, 262(1), 012048. https://doi.org/10.1088/1757-899X/262/1/012048.
  65. Krishnan, V. and Elavenil, S. (2020), "Performance of geopolymer materials concrete filled stainless steel tubular (GCFSST) column subject to axial compression", Mater. Today Proc., 45, 6415-6425. https://doi.org/10.1016/j.matpr.2020.11.269.
  66. Kun, W. Feng, Y.S., Xian, C.Z., Xiang, Z.H., Lin, S.G. and Fu, C.D. (2016), "Experimental study on hysteretic behavior of composite frames with concrete-encased CFST columns", J. Constr. Steel Res., 123, 110-120. https://doi.org/http://dx.doi.org/10.1016/j.jcsr.2016.04.024.
  67. Lee, H.J., Park, H.G. and Choi, I.R. (2019), "Eccentric compression behavior of concrete-encased-and-filled steel tube columns with high-strength circular steel tube", Thin-Wall. Struct., 144(March), 106339. https://doi.org/10.1016/j.tws.2019.106339.
  68. Li, J., Wang, W., Wu, C., Liu, Z. and Wu, P. (2022), "Impact response of ultra-high performance fiber-reinforced concrete filled square double-skin steel tubular columns", Steel Compos. Struct., 42(3), 325-351. https://doi.org/10.12989/scs.2022.42.3.325.
  69. Li, N., Na, L., Lu, Y., Li, S. and Gao, D. (2020), "Axial compressive behaviour of steel fibre reinforced self-stressing and self-compacting concrete-filled steel tube columns", Eng. Struct., 222(July), 111108. https://doi.org/10.1016/j.engstruct.2020.111108.
  70. Li, S., Han, L.H. and Hou, C. (2018), "Concrete-encased CFST columns under combined compression and torsion: Analytical behaviour", J. Constr. Steel Res., 144, 236-252. https://doi.org/10.1016/j.jcsr.2018.01.020.
  71. Li, S., Liew, J.Y.R. and Xiong, M.X. (2021), "Prediction of fire resistance of concrete encased steel composite columns using artificial neural network", Eng. Struct., 245(June), 112877. https://doi.org/10.1016/j.engstruct.2021.112877.
  72. Li, W. Ren, Q.X., Han, L.H. and Zhao, X.L. (2012), "Behaviour of tapered concrete-filled double skin steel tubular (CFDST) stub columns", Thin-Wall. Struct., 57, 37-48. https://doi.org/10.1016/j.tws.2012.03.019.
  73. Li, W., Ma, D.Y., Xu, L.F. and Qian,W.W. (2022), "Performance of concrete-encased CFST column-to-beam 3-D joints under seismic loading: Analysis", Eng. Struct., 252(November 2021), 113661. https://doi.org/10.1016/j.engstruct.2021.113661.
  74. Li, W., Xu, L.F. and Qian, W.W. (2020), "Seismic performance of concrete-encased CFST column to steel beam joints with different connection details", Eng. Struct., 204(June 2019), 109875. https://doi.org/10.1016/j.engstruct.2019.109875.
  75. Li, W., Xu, L.F. and Qian, W.W. (2021), "Seismic performance of 3-D steel beam to concrete-encased CFST column joints: Tests", Eng. Struct., 232(April), 111793. https://doi.org/10.1016/j.engstruct.2020.111793.
  76. Li, Y., Li, G., Hou, C. and Zhang, W.J. (2019), "Long-term experimental behavior of concrete-encased CFST with preload on the inner CFST", J. Constr. Steel Res., 155, 355-369. https://doi.org/10.1016/j.jcsr.2019.01.001.
  77. Li, Y.J., Han, L.H., Xu, W. and Tao, Z., (2016), "Circular concrete-encased concrete-filled steel tube (CFST) stub columns subjected to axial compression", Mag. Concr. Res., 68(19), 995-1010. https://doi.org/10.1680/jmacr.15.00359.
  78. Liao, F.Y., Han, L.H. and Tao, Z. (2014), "Behaviour of composite joints with concrete encased CFST columns under cyclic loading: Experiments", Eng. Struct., 59, 745-764. https://doi.org/10.1016/j.engstruct.2013.11.030.
  79. Liao, J.J. Zeng, J.J., Long, Y.L., Cai, J. and Ouyang, Y. (2022), "Behavior of square and rectangular concrete-filled steel tube (CFST) columns with horizontal reinforcing bars under eccentric compression", Eng. Struct., 271(August), 114899. https://doi.org/10.1016/j.engstruct.2022.114899.
  80. Liu, X. Liu, S., Hui, Y. and Wang, B. (2022), "Mechanical properties of CFDST column under eccentric compression after exposed to fire", Struct., 43(May), 1200-1215. https://doi.org/10.1016/j.istruc.2022.07.036.
  81. Lyu, X., Zhang, T., Liu, F. and Liu, Y. (2022), "Behaviours of stiffened concrete-filled thin-walled square steel tubular stub columns after non-uniform fire exposure", J. Constr. Steel Res., 188(November 2021), 107031. https://doi.org/10.1016/j.jcsr.2021.107031.
  82. Ma, D.Y., Han, L.H., Li, W., Hou, C. and Mu, T.M. (2018), "Behaviour of concrete-encased CFST stub columns subjected tolong-term sustained loading", J. Constr. Steel Res.,151, 58-69. https://doi.org/10.1016/j.jcsr.2018.09.016.
  83. Ma, D. Y., Han, L. H., Ji, X. and Yang, W.B. (2018), "Behaviour of hexagonal concrete-encased CFST columns under cyclic bending", J. Constr. Steel Res., 144, 283-294. https://doi.org/https://doi.org/10.1016/j.jcsr.2018.01.019.
  84. Ma, D.Y., Han, L.H., Zhao, X.L. and Yang, W.B. (2020), "Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study", Steel Compos. Struct., 36(5), 533-551. https://doi.org/10.12989/scs.2020.36.5.533.
  85. Ma, Y.X., Zhao, O. and Tan, K.H. (2021), "Experimental and numerical studies of concrete-encased concrete-filled steel tube stub columns under uniaxial and biaxial eccentric compression", Eng. Struct., 232(December 2020), 111796. https://doi.org/10.1016/j.engstruct.2020.111796.
  86. Maraveas, C., Wang, Y.C. and Swailes, T. (2016), "Elevated temperature behaviour and fire resistance of cast iron columns", Fire Saf. J., 82, 37-48. https://doi.org/10.1016/j.firesaf.2016.03.004.
  87. Md Rian, I. and Sassone, M. (2014), "Tree-inspired dendriforms and fractal-like branching structures in architecture: A brief historical overview", Front. Archit. Res., 3(3), 298-323. https://doi.org/10.1016/j.foar.2014.03.006.
  88. Medall, D. Espinos, A., Albero, V. and Romero, M.L. (2022), "Simplified proposal for the temperature field of steel-reinforced CFST columns exposed to fire", Eng. Struct., 273(May), 115083. https://doi.org/10.1016/j.engstruct.2022.115083.
  89. Medall, D., Ibanez, C., Albero, V., Espinos, A. and Romero, M.L. (2023), "Experimental residual capacity of steel-reinforced concrete-filled steel tubular stub columns after fire exposure", Thin-Wall. Struct., 189(February), 110900. https://doi.org/10.1016/j.tws.2023.110900.
  90. Memarzadeh, A. and Nematzadeh, M. (2021), "Axial compressive performance of steel reinforced fibrous concrete composite stub columns: Experimental and theoretical study", Struct., 34(August), 2455-2475. https://doi.org/10.1016/j.istruc.2021.08.130.
  91. Mir Mohammad Azad, A.B. and Shrmin, S. (2014), "A review analysis of ancient Greek architecture", Int. J. Civ. Eng. Constr. Estate Manag., 6(11), 48-58.
  92. Morino, S. and Tsuda, K. (2002), "Design and construction of concrete-filled steel tube column system in Japan", Earthq. Eng. Eng. Seismol., 4(1), 51-73.
  93. Naghipour, M., Ahmadi, M. and Nematzadeh, M. (2022), "Effect of concrete confinement level on load-bearing capacity of steel-reinforced concrete (SRC) columns under eccentric loading: Experiment and FEA model", Struct., 35(July 2021), 202-213. https://doi.org/10.1016/j.istruc.2021.10.094.
  94. Nematzadeh, M., Karimi, A. and Gholampour, A. (2020), "Pre-and post-heating behavior of concrete-filled steel tube stub columns containing steel fiber and tire rubber", Struct., 27(July), 2346-2364. https://doi.org/10.1016/j.istruc.2020.07.034.
  95. Nematzadeh, M., Memarzadeh, A. and Karimi, A. (2020),"Post-fire elastic modulus of rubberized fiber-reinforced concrete-filled steel tubular stub columns: Experimental and theoretical study", J. Constr. Steel Res., 175, 106310. https://doi.org/10.1016/j.jcsr.2020.106310.
  96. Nguyen, D.H., Hong, W.K., Ko, H.J. and Kim, S.K. (2019), "Finite element model for the interface between steel and concrete of CFST (concrete-filled steel tube)", Eng. Struct., 185(August 2018), 141-158. https://doi.org/10.1016/j.engstruct.2019.01.068.
  97. Niyirora, R. Niyonyungu, F., Hakuzweyezu, T., Masengesho, E., Nyirandayisabye, R. and Munyaneza, J. (2023), "Behavior of concrete-encased concrete-filled steel tube columns under diverse loading conditions: A review of current trends and future prospects", Cogent Eng., 10(1). https://doi.org/10.1080/23311916.2022.2156056.
  98. Ombres, L. and Verre, S. (2020), "Analysis of the behavior of FRCM confined clay brick masonry columns", Fibers, 8(2), 1-19. https://doi.org/10.3390/fib8020011.
  99. Pham, T.M. and Hao, H. (2017), "Plastic hinges and inertia forces in RC beams under impact loads", Int. J. Impact Eng., 103, 1-11. https://doi.org/10.1016/j.ijimpeng.2016.12.016.
  100. Ponsubbiah, A.R., Ravi, D., S.P.S., Thirumoorthy, M. and F.S.F. (2020), "Numerical simulation and experimental investigation on seismic performance of composite structural connection of encased CFST column and reinforced concrete beam with steel ring", Open Constr. Build. Technol. J., 14(1), 309-320. https://doi.org/10.2174/1874836802014010309.
  101. Qian, W.W., Li, W., Han, L.H. and Zhao, X.L. (2016), "Analytical behavior of concrete-encased CFST columns under cyclic lateral loading", J. Constr. Steel Res., 120, 206-220. https://doi.org/10.1016/j.jcsr.2015.12.018.
  102. Qiao, Q.Y., Zhang, W.W., Mou, B. and Cao,W.L (2019), "Seismic behavior of exposed concrete filled steel tube column bases with embedded reinforcing bars: Experimental investigation", Thin-Wall. Struct., 136(May 2018), 367-381. https://doi.org/10.1016/j.tws.2018.12.039.
  103. Manigandan, R., Kumar, M. and Shedge, H.N. (2022), "Investigation on circular and octagonal concrete-filled double skinned steel tubular short columns under axial compression", Steel Compos. Struct., 44(1), 141-154. https://doi.org/https://doi.org/10.12989/scs.2022.44.1.141.
  104. Rahmani, Z., Naghipour, M. and Nematzadeh, M. (2019), "Flexural Performance of High-strength Prestressed Concrete-encased Concrete-filled Steel Tube", Int. J. Eng., 32(9), 1238-1247. https://doi.org/10.5829/ije.2019.32.09c.03.
  105. Raju, S. and Sasikumar, S.P. (2020), "Thermo-structural behaviour of concrete encased concrete filled steel tube columns subjected to fire", Int. Res. J. Eng. Technol., 7(7), 2595-2600.
  106. Rashmi, R. and Padmapriya, R. (2022), "Experimental and analytical study on flexural behavior of reinforced concrete beams using nano silica", Mater. Today Proc., 50, 57-69. https://doi.org/10.1016/j.matpr.2021.04.127.
  107. Raveendran, N. and Babu, G.R. (2023), "A critical review on using concrete filled steel tubular column with artificial damage scenario", AIP Conference Proceedings, 2856(1), 40013. https://doi.org/10.1063/5.0165740.
  108. Reddy, G.S.R., Bolla, M., Patton, M.L. and Adak, D. (2021), "Comparative study on structural behaviour of circular and square section-Concrete Filled Steel Tube (CFST) and Reinforced Cement Concrete (RCC) stub column", Struct., 29(September 2020), 2067-2081. https://doi.org/10.1016/j.istruc.2020.12.078.
  109. Ren, F.M., Liang, Y. W., Ho, J. C.M. and Lai, M.H. (2020), "Behaviour of FRP tube-concrete-encased steel composite columns", Compos. Struct., 241(January), 112139. https://doi.org/10.1016/j.compstruct.2020.112139.
  110. Ren, Q.X., Hou, C., Lam, D. and Han, L.H. (2014), "Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns", Steel Compos. Struct., 17(5), 667-686. https://doi.org/10.12989/scs.2014.17.5.665.
  111. Ren, Q.X., Han, L.H., Hou, C., Tao, Z. and Li S. (2017), "Concrete-encased CFST columns under combined compression and torsion: Experimental investigation", J. Constr. Steel Res., 138, 729-741. https://doi.org/http://dx.doi.org/10.1016/j.jcsr.2017.08.016.
  112. Sandeep Kauthsa Sharma, M., Umadevi, S., Sai Sampath, Y., Vasugi, K., Sai Nitesh, K.J.N., Swamy Nadh, V. and Natrayan, L. (2021). [Retracted] "Mechanical behavior of silica fume concrete filled with steel tubular composite column", Adv. Mater. Sci. Eng., 2021(1), 3632991. https://doi.org/10.1155/2021/3632991.
  113. Specification for Structural Steel Buildings (2022), AISC Eng. J., 78-89.
  114. Tao, Z., Han, L.H., Uy, B. and Chen, X. (2011), "Post-fire bond between the steel tube and concrete in concrete-filled steel tubular columns", J. Constr. Steel Res., 67(3), 484-496. https://doi.org/10.1016/j.jcsr.2010.09.006.
  115. Thai, H.T., Thai, S., Ngo, T., Uy, B., Kang, W.H. and Hicks, S.J. (2021), "Reliability considerations of modern design codes for CFST columns", J. Constr. Steel Res., 177, 106482. https://doi.org/10.1016/j.jcsr.2020.106482.
  116. Tiwary, A.K. (2022), "Experimental investigation into mild steel circular concrete-filled double skin steel tube columns", J. Constr. Steel Res., 198(August), 107527. https://doi.org/10.1016/j.jcsr.2022.107527.
  117. Tokgoz, S., Karaahmetli, S. and Dundar, C. (2022), "Test and analysis of concrete-filled double steel and double skin tubular columns having outer stainless steel tube", Steel Compos. Struct., 45(1), 23-38. https://doi.org/10.12989/scs.2022.45.1.023.
  118. Tort, C. and Hajjar, J.F. (2010), "Mixed finite-element modeling of rectangular concrete-filled steel tube members and frames under static and dynamic loads", J. Struct. Eng., 136(6), 654-664. https://doi.org/10.1061/(asce)st.1943-541x.0000158.
  119. Vasugi, K. and Elavenil, S. (2019), "Confinement of concrete by stainless steel tubular sections - A review", Int. J. Eng. Adv. Technol., 8(3), 468-472.
  120. Wang, F.C. and Han, L.H. (2019), "Analytical behavior of carbon steel-concrete-stainless steel double-skin tube (DST) used in submarine pipeline structure", Mar. Struct., 63(October 2018), 99-116. https://doi.org/10.1016/j.marstruc.2018.09.001.
  121. Wang, J., Hu, Z., Guo, L., Wang, B. and Yang, Y. (2021), "Analytical performance and design of CECFST column assembled to PEC beam joint", KSCE J. Civ. Eng., 25(7), 2567-2586. https://doi.org/10.1007/s12205-021-1055-0.
  122. Wang, K., Luo, H., Guo, K., Zhou, J. and Ma, H. (2017), "Analysis on hysteretic behavior of composite frames with concrete-encased CFST columns", J. Constr. Steel Res., 135, 176-186. https://doi.org/10.1016/j.jcsr.2017.03.011
  123. Wang, K., Luo, H., Guo, K., Zhou, J. and Ma, H. (2021), "Seismic collapse resistance performance on out-jacketing frames with concrete-encased CFST columns for adding storeys", Struct., 33(June 2020), 41-53. https://doi.org/10.1016/j.istruc.2021.04.037.
  124. Wang, K., Zhu, Z., Yang, Y., Yan, K., Xu, G. and Zhang,G. (2021), "Study on shear capacity of prestressed composite joints with concrete-encased CFST columns", Adv. Struct. Eng., 24(11), 2457-2471. https://doi.org/10.1177/13694332211000558.
  125. Wang, K. and Luo, H. (2019), "Test on hysteretic behaviour of prestressed composite joints with concrete-encased CFST columns", Adv. Civ. Eng., 2019(Article ID 4523045), 1-13. https://doi.org/10.1155/2019/4523045.
  126. Wang, W., Wang, J., Guo, L., Guo, X. and Liu, X. (2020), "Behavior and analytical investigation of assembled connection between steel beam and concrete encased CFST column", Struct., 24(January), 562-579. https://doi.org/10.1016/j.istruc.2020.01.037.
  127. Wang, W.H., Li, W., Song, Q.Y., Dong, Y.L. and Ding, Q.R. (2022), "Performance of steel-reinforced square CFST stub columns loaded in axial compression: Experiments", J. Constr. Steel Res., 191(November 2021), 107197. https://doi.org/10.1016/j.jcsr.2022.107197.
  128. Wang, X., Fan, F. and Lai, J. (2022), "Strength behavior of circular concrete-filled steel tube stub columns under axial compression: A review", Constr. Build. Mater., 322(December 2021), 126144. https://doi.org/10.1016/j.conbuildmat.2021.126144.
  129. Wei, H., Wang, H.J. and Hasegawa Akira (2014), "Experimental study on reinforced concrete filled circular steel tubular columns", Steel Compos. Struct., 17(4), 517-533. https://doi.org/http://dx.doi.org/10.12989/scs.2014.17.4.517.
  130. Wu, N. and Tan, K.H. (2023), "Testing, modelling and design of concentrically-loaded concrete-encased concrete-filled steel tube slender column", J. Constr. Steel Res., 203(January), 107810. https://doi.org/10.1016/j.jcsr.2023.107810.
  131. Xiang, K., Pan, Y.C. and Wang, G.H. (2018), "xial compression analysis of square concrete-encased concrete filled steel tubular stub columns after fire exposure", In Procedia Eng., 1151-1159. https://doi.org/10.1016/j.proeng.2017.12.122.
  132. Xu, W., Han, L.-H. and Li, W. (2016), "Seismic performance of concrete-encased column base for hexagonal concrete-filled steel tube: experimental study", J. Constr. Steel Res., 121, 352-369. https://doi.org/10.1016/j.jcsr.2016.02.003.
  133. Xu, W., Han, L.H. and Li, W. (2016), "Performance of hexagonal CFST members under axial compression and bending", J. Constr. Steel Res., 123, 162-175. https://doi.org/10.1016/j.jcsr.2016.04.026.
  134. Xue, Y. Shang, C., Yang, Y., and Yu, Y. (2022a), "Macro-modeling on cyclic behavior of concrete-encased steel short columns under shear failure", J. Build. Eng., 51(March), 104297. https://doi.org/https://doi.org/10.1016/j.jobe.2022.104297114375.
  135. Xue, Y., Shang, C., Yang, Y. and Yu Y. (2022b), "Prediction of lateral load-displacement curve of concrete-encased steel short columns under shear failure", Eng. Struct., 262(April), 114375. https://doi.org/10.1016/j.engstruct.2022.114375.
  136. Ye, Y., Liu, Y., Guo, Z.X. and Chicchi, R. (2021), "Stone prism encased concrete-filled steel tube columns subjected to axial compression", Struct., 33(May), 1853-1867. https://doi.org/10.1016/j.istruc.2021.05.058.
  137. Yuan, F., Chen, M., Huang, H., Xie, L. and Wang, C. (2018), "Circular concrete filled steel tubular (CFST) columns under cyclic load and acid rain attack: Test simulation", Thin-Wall. Struct., 122(September 2017), 90-101. https://doi.org/10.1016/j.tws.2017.10.005.
  138. Zhang, J, Li, Y., Zheng, Y. and Wang, Z. (2018), "Seismic damage investigation of spatial frames with steel beams connected to L-shaped concrete-filled steel tubular (CFST) columns", Appl. Sci., 8(10), 1713. https://doi.org/10.3390/app8101713.
  139. Zhang, J., Li, X., Cao, W. and Yu, C. (2019), "Cyclic behavior of steel tube-reinforced high-strength concrete composite columns with high-strength steel bars", Eng. Struct., 189(December 2018), 565-579. https://doi.org/10.1016/j.engstruct.2019.04.006.
  140. Zhang, Z., Xu, S., Wang, Y., Nie, B. and Wei, T. (2020), "Local and post-buckling behavior of corroded axially-compressed steel columns", Thin-Wall. Struct., 157(March), 107108. https://doi.org/10.1016/j.tws.2020.107108.
  141. Zhao, X.L. and Han, L.H. (2006), "Double skin composite construction", Prog. Struct. Eng. Mater., 8(3), 93-102. https://doi.org/10.1002/pse.216.
  142. Zheng, Y. and Tao, Z. (2019), "Compressive strength and stiffness of concrete-filled double-tube columns", Thin-Wall. Struct., 134(October 2018), 174-188. https://doi.org/10.1016/j.tws.2018.10.019.
  143. Zheng, Y., Wang, C. and Chen, M. (2022), "Flexural strength and stiffness of circular double-skin and double-tube concrete-filled steel tubes", Mar. Struct., 81(November 2021), 103126. https://doi.org/10.1016/j.marstruc.2021.103126.
  144. Wang, K., Luo, H., Guo, K., Zhou, J. and Ma, H. (2023), "Compressive behavior of PET FRP-confined concrete encased CFST columns", J. Construct. Steel Res., 202, 107732. https://doi.org/https://doi.org/10.1016/j.jcsr.2022.107732.
  145. Zhou, J., Li, P. and Guo, N. (2020), "Seismic performance assessment of a precast concrete-encased CFST composite wall with twin steel tube connections", Eng. Struct., 207(January), 110240. https://doi.org/10.1016/j.engstruct.2020.110240.
  146. Zhou, K. and Han, L.-H. (2016), "Experimental behavior of concrete-encased Cfst columns after exposure to fire", 4th International Conference on Protective Structures (ICPS4)At: Beijing, China, 873-881. https://www.researchgate.net/publication/326579594.
  147. Zhou, K. and Han, L.H. (2018), "Experimental performance of concrete-encased CFST columns subjected to full-range fire including heating and cooling", Eng. Struct., 165(March), 331-348. https://doi.org/10.1016/j.engstruct.2018.03.042.
  148. Zhou, K. and Han, L.H. (2019), "Modelling the behaviour of concrete-encased concrete-filled steel tube (CFST) columns subjected to full-range fire", Eng. Struct., 183(December 2018), 265-280. https://doi.org/10.1016/j.engstruct.2018.12.100.