DOI QR코드

DOI QR Code

Thermal post-buckling measurement of the advanced nanocomposites reinforced concrete systems via both mathematical modeling and machine learning algorithm

  • Minggui Zhou (School of Intelligent Construction, Luzhou vocational and technical college) ;
  • Gongxing Yan (School of Intelligent Construction, Luzhou vocational and technical college) ;
  • Danping Hu (School of Intelligent Construction, Luzhou vocational and technical college) ;
  • Haitham A. Mahmoud (Industrial Engineering Department, College of Engineering, King Saud University)
  • Received : 2020.10.06
  • Accepted : 2024.06.18
  • Published : 2024.06.25

Abstract

This study investigates the thermal post-buckling behavior of concrete eccentric annular sector plates reinforced with graphene oxide powders (GOPs). Employing the minimum total potential energy principle, the plates' stability and response under thermal loads are analyzed. The Haber-Schaim foundation model is utilized to account for the support conditions, while the transform differential quadrature method (TDQM) is applied to solve the governing differential equations efficiently. The integration of GOPs significantly enhances the mechanical properties and stability of the plates, making them suitable for advanced engineering applications. Numerical results demonstrate the critical thermal loads and post-buckling paths, providing valuable insights into the design and optimization of such reinforced structures. This study presents a machine learning algorithm designed to predict complex engineering phenomena using datasets derived from presented mathematical modeling. By leveraging advanced data analytics and machine learning techniques, the algorithm effectively captures and learns intricate patterns from the mathematical models, providing accurate and efficient predictions. The methodology involves generating comprehensive datasets from mathematical simulations, which are then used to train the machine learning model. The trained model is capable of predicting various engineering outcomes, such as stress, strain, and thermal responses, with high precision. This approach significantly reduces the computational time and resources required for traditional simulations, enabling rapid and reliable analysis. This comprehensive approach offers a robust framework for predicting the thermal post-buckling behavior of reinforced concrete plates, contributing to the development of resilient and efficient structural components in civil engineering.

Keywords

Acknowledgement

This work was supported by Sichuan Province Luzhou city of Stars science and technology planning project(2021-JYJ-100) and (2022-JYJ-130). The authors extend their appreciation to King Saud University for funding this work through Researchers Supporting Project number (RSPD2024R1006), King Saud University, Riyadh, Saudi Arabia.

References

  1. Behravan-Rad, A. and Jafari, M. (2020), "Hygroelasticity analysis of an elastically restrained functionally graded porous metamaterial circular plate resting on an auxetic material circular plate", Appl. Math. Mech., 41, 1359-1380. https://doi.org/10.1007/s10483-020-2651-7.
  2. Chen, C., Yang, H., Song, K., Liang, D., Zhang, Y. and Ni, J. (2023), "Dissolution feature differences of carbonate rock within hydro-fluctuation belt located in the Three Gorges Reservoir Area", Eng. Geol., 327, 107362. https://doi.org/10.1016/j.enggeo.2023.107362.
  3. Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
  4. Chen, J.T., Tsai, M.H. and Liu, C.S. (2009), "Conformal mapping and bipolar coordinate for eccentric Laplace problems", Comput. Appl. Eng. Educ., 17(3), 314-322. https://doi.org/10.1002/cae.20208.
  5. Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Advances in nano research. 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
  6. Ebrahimi, F. and Jafari, A. (2017), "Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory", Adv. Nano Res., 5(4), 281. https://doi.org/10.12989/anr.2017.5.4.281
  7. Ebrahimi, F., Karimiasl, M., Civalek, O . and Vinyas, M. (2019a), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., 7(2), 77. https://doi.org/10.12989/anr.2019.7.2.077.
  8. Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019b), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. https://doi.org/10.12989/anr.2019.7.4.223.
  9. Ebrahimi, F. and Salari, E. (2019), "Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams", Adv. Nano Res., 6(4), 377. https://doi.org/10.12989/anr.2018.6.4.377
  10. Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068.
  11. Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179. https://doi.org/10.12989/anr.2017.5.2.179.
  12. Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109. https://doi.org/10.12989/anr.2019.7.2.109
  13. Feng, Y., Mohammadi, M., Wang, L., Rashidi, M. and Mehrabi, P. (2021), "Application of artificial intelligence to evaluate the fresh properties of self-consolidating concrete", Materials, 14(17), 4885. https://doi.org/10.3390/ma14174885.
  14. Firouzianhaji, A., Usefi, N., Samali, B. and Mehrabi, P. (2021), "Shake table testing of standard cold-formed steel storage rack", Appl. Sci., 11(4), 1821. https://doi.org/10.3390/ma14174885.
  15. Ghannadpour, S. and Moradi, F. (2019), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., 7(5), 311-324. https://doi.org/10.12989/anr.2019.7.5.311.
  16. Guida-Pietrasanta, F., Boutevin, B., Nuyken, O., Becker, O., Simon, G.P., Dusek, K., Rusanov, A.L., Likhatchev, D., Kostoglodov, P.V. and Mullen, K. (2005), "Polymer-clay nanocomposites", Inorgan. Polym. Nanocompos. Membr., 135-195. https://doi.org/10.1007/b104481.
  17. Han, S., Zheng, D., Mehdizadeh, B., Nasr, E.A., Khandaker, M.U., Salman, M. and Mehrabi, P. (2023a), "Sustainable design of self-consolidating green concrete with partial replacements for cement through neural-network and fuzzy technique", Sustainability, 15(6), 4752. https://doi.org/10.3390/su15064752.
  18. Han, S., Zhu, Z., Mortazavi, M., El-Sherbeeny, A.M. and Mehrabi, P. (2023b), "Analytical assessment of the structural behavior of a specific composite floor system at elevated temperatures using a newly developed hybrid intelligence method", Buildings, 13(3), 799. https://doi.org/10.3390/buildings13030799.
  19. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin Wall. Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019.
  20. He, H., Shuang, E., Ai, L., Wang, X., Yao, J., He, C. and Cheng, B. (2023), "Exploiting machine learning for controlled synthesis of carbon dots-based corrosion inhibitors", J. Clean. Prod., 419, 138210. https://doi.org/10.1016/j.jclepro.2023.138210.
  21. He, H., Qiao, H., Sun, T., Yang, H. and He, C. (2024a), "Research progress in mechanisms, influence factors and improvement routes of chloride binding for cement composites", J. Build. Eng., 108978. https://doi.org/10.1016/j.jobe.2024.108978.
  22. He, H., Shuang, E., Lu, D., Hu, Y., Yan, C., Shan, H. and He, C. (2024b), "Deciphering size-induced influence of carbon dots on mechanical performance of cement composites", Constr. Build. Mater., 425, 136030. https://doi.org/10.1016/j.conbuildmat.2024.136030.
  23. He, L., Maalla, A., Zhou, X. and Tang, H. (2024c), "Buckling and post-buckling of anisogrid lattice-core sandwich plates with nanocomposite skins", Thin Wall. Struct., 199, 111828. https://doi.org/10.1016/j.tws.2024.111828.
  24. Horne, J., Beddingfield, E., Knapp, M., Mitchell, S., Crawford, L., Mills, S.B., Wrist, A., Zhang, S. and Summers, R.M. (2020), "Caffeine and theophylline inhibit β-galactosidase activity and reduce expression in Escherichia coli", ACS omega, 5(50), 32250-32255. https://doi.org/10.1021/acsomega.0c03909
  25. Hu, D., Sun, H., Mehrabi, P., Ali, Y.A. and Al-Razgan, M. (2023), "Application of artificial intelligence technique in optimization and prediction of the stability of the walls against wind loads in building design", Mech. Adv. Mater. Struct., 1-18. https://doi.org/10.1080/15376494.2023.2206208.
  26. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8), 04020157. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
  27. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1177/13694332221131153.
  28. Huang, H., Li, M., Zhang, W. and Yuan, Y. (2022), "Seismic behavior of a friction-type artificial plastic hinge for the precast beam-column connection", Arch. Civil Mech. Eng., 22(4), 201. https://doi.org/10.1007/s43452-022-00526-1.
  29. Huang, H., Yao, Y., Liang, C. and Ye, Y. (2022), "Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam", Soil Dyn. Earthq. Eng., 163, 107499. https://doi.org/10.1016/j.soildyn.2022.107499.
  30. Huang, H., Yuan, Y., Zhang, W. and Zhu, L. (2021), "Property assessment of high-performance concrete containing three types of fibers", Int. J. Concr. Struct. Mater., 15(1), 1-17. https://doi.org/10.1186/s40069-021-00476-7.
  31. Javani, M., Kiani, Y. and Eslami, M. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin Wall. Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589.
  32. Kong, G., Sun, G., Liu, H. and Li, J. (2021), "Dynamic response of ballastless track XCC pile-raft foundation under train axle loads", J. Test. Evaluat., 49(3), 1691-1704. https://doi.org/10.1520/JTE20180032.
  33. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135. https://doi.org/10.12989/anr.2018.6.2.135
  34. Li, H., Yang, Y., Wang, X. and Tang, H. (2023), "Effects of the position and chloride-induced corrosion of strand on bonding behavior between the steel strand and concrete", Structures, 2023. https://doi.org/10.1016/j.istruc.2023.105500
  35. Li, Z., Gao, M., Lei, Z., Tong, L., Sun, J., Wang, Y., Wang, X. and Jiang, X. (2023), "Ternary cementless composite based on red mud, ultra-fine fly ash, and GGBS: Synergistic utilization and geopolymerization mechanism", Case Stud. Constr. Mater., 19, e02410. https://doi.org/10.1016/j.cscm.2023.e02410.
  36. Liew, K., Yang, J. and Kitipornchai, S. (2003), "Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading", Int. J. Solids Struct., 40(15), 3869-3892. https://doi.org/10.1016/S0020-7683(03)00096-9.
  37. Liu, B., Yang, H. and Karekal, S. (2020), "Effect of water content on argillization of mudstone during the tunnelling process", Rock Mech. Rock Eng., 53, 799-813. https://doi.org/10.1007/s00603-019-01947-w.
  38. Liu, J., Mohammadi, M., Zhan, Y., Zheng, P., Rashidi, M. and Mehrabi, P. (2021), "Utilizing artificial intelligence to predict the superplasticizer demand of self-consolidating concrete incorporating pumice, slag, and fly ash powders", Materials, 14(22), 6792. https://doi.org/10.3390/ma14226792.
  39. Lu, D., Wang, G., Du, X. and Wang, Y. (2017), "A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete", Int. J. Impact Eng., 103, 124-137. https://doi.org/10.1016/j.ijimpeng.2017.01.011.
  40. Lu, D., Zhou, X., Du, X. and Wang, G. (2019), "A 3D fractional elastoplastic constitutive model for concrete material", Int. J. Solids Struct., 165, 160-175. https://doi.org/10.1016/j.ijsolstr.2019.02.004.
  41. Luo, Y., Liao, P., Pan, R., Zou, J. and Zhou, X. (2024), "Effect of bar diameter on bond performance of helically ribbed GFRP bar to UHPC", J. Build. Eng., 91, 109577. https://doi.org/10.1016/j.jobe.2024.109577.
  42. Mehrabi, P., Honarbari, S., Rafiei, S., Jahandari, S. and Alizadeh Bidgoli, M. (2021), "Seismic response prediction of FRC rectangular columns using intelligent fuzzy-based hybrid metaheuristic techniques", J. Ambient Intell. Human. Comput., 12, 10105-10123. https://doi.org/10.3390/ma14174885.
  43. Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N.T., Shariati, A. and Jahandari, S. (2021), "Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate", Constr. Building Mater., 287, 122652. https://doi.org/10.3390/ma14174885.
  44. Mock, M.B., Zhang, S., Pakulski, K., Hutchison, C., Kapperman, M., Dreischarf, T. and Summers, R.M. (2024), "Production of 1-methylxanthine via the biodegradation of theophylline by an optimized Escherichia coli strain", J. Biotechnol., 379, 25-32. https://doi.org/10.1016/j.jbiotec.2023.11.005
  45. Mock, M.B., Zhang, S., Pniak, B., Belt, N., Witherspoon, M. and Summers, R.M. (2021), "Substrate promiscuity of the NdmCDE N7-demethylase enzyme complex", Biotechnol. Notes, 2, 18-25. https://doi.org/10.1016/j.biotno.2021.05.001
  46. Pang, B., Jin, Z., Zhang, Y., Xu, L., Li, M., Wang, C., Zhang, Y., Yang, Y., Zhao, P. and Bi, J. (2022), "Ultraductile waterborne epoxy-concrete composite repair material: Epoxy-fiber synergistic effect on flexural and tensile performance", Cement Concr. Compos., 129, 104463. https://doi.org/10.1016/j.cemconcomp.2022.104463.
  47. Qiu, Y. (2019), "Estimation of tail risk measures in finance: Approaches to extreme value mixture modeling", Johns Hopkins University.
  48. Qiu, Y. and Wang, J. (2024). "A machine learning approach to credit card customer segmentation for economic stability", Proceedings of the 4th International Conference on Economic Management and Big Data Applications, ICEMBDA 2023, October 27-29, 2023, Tianjin, China, 2024.
  49. Sadd, M.H. (2009), Elasticity: Theory, Applications and Numerics, Academic Press.
  50. Salari, F.E.E. (2016), "Thermal loading effects on electromechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams", Adv. Nano Res., 4(3), 197. https://doi.org/10.12989/anr.2016.4.3.197
  51. Song, K., Yang, H., Liang, D., Chen, L. and Jaboyedoff, M. (2024), "Step-like displacement prediction and failure mechanism analysis of slow-moving reservoir landslide", J. Hydrol., 628, 130588. https://doi.org/10.1016/j.jhydrol.2023.130588.
  52. Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2023), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153.
  53. Taheri, E., Firouzianhaji, A., Mehrabi, P., Vosough Hosseini, B. and Samali, B. (2020), "Experimental and numerical investigation of a method for strengthening cold-formed steel profiles in bending", Appl. Sci., 10(11), 3855. https://doi.org/10.3390/app10113855.
  54. Taheri, E., Firouzianhaji, A., Usefi, N., Mehrabi, P., Ronagh, H. and Samali, B. (2019), "Investigation of a method for strengthening perforated cold-formed steel profiles under compression loads", Appl. Sci., 9(23), 5085. https://doi.org/10.3390/ma14174885.
  55. Taheri, E., Mehrabi, P., Rafiei, S. and Samali, B. (2021), "Numerical evaluation of the upright columns with partial reinforcement along with the utilisation of neural networks with combining feature-selection method to predict the load and displacement", Appl. Sci., 11(22), 11056. https://doi.org/10.3390/app112211056.
  56. Tian, J., Wang, B., Guo, R., Wang, Z., Cao, K. and Wang, X. (2021), "Adversarial attacks and defenses for deep-learning-based unmanned aerial vehicles", IEEE Internet Things J., 9(22), 22399-22409. https://doi.org/10.1109/JIOT.2021.3111024.
  57. Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.3390/ma14174885.
  58. Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1. https://doi.org/10.12989/anr.2013.1.1.001
  59. Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H. and Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500.
  60. Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., 6(2), 163. https://doi.org/10.12989/anr.2018.6.2.163
  61. Wu, J., Yang, Y., Mehrabi, P. and Nasr, E.A. (2023), "Efficient machine-learning algorithm applied to predict the transient shock reaction of the elastic structure partially rested on the viscoelastic substrate", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2023.2183289.
  62. Wu, Y., Wang, X., Fan, Y., Shi, J., Luo, C. and Wang, X. (2024), "A study on the ultimate span of a concrete-filled steel tube arch bridge", Buildings, 14(4), 896. https://doi.org/10.3390/buildings14040896.
  63. Xia, D., Alexander, A.K., Isbell, A., Zhang, S., Ou, J. and Liu, X.M. (2017), "Establishing a co-culture system for Clostridium cellulovorans and Clostridium aceticum for high efficiency biomass transformation", J. Sci. Heal. Univ. Ala., 14, 8-13.
  64. Yang, H., Chen, C., Ni, J. and Karekal, S. (2023), "A hyperspectral evaluation approach for quantifying salt-induced weathering of sandstone", Sci. Total Environ., 885, 163886. https://doi.org/10.1016/j.scitotenv.2023.163886.
  65. Yang, H., Ni, J., Chen, C. and Chen, Y. (2023), "Weathering assessment approach for building sandstone using hyperspectral imaging technique", Heritage Sci., 11(1), 70. https://doi.org/10.1186/s40494-023-00914-7.
  66. Yang, H., Song, K. and Zhou, J. (2022), "Automated recognition model of geomechanical information based on operational data of tunneling boring machines", Rock Mech. Rock Eng., 1-18. https://doi.org/10.1007/s00603-021-02723-5.
  67. Yao, X., Lyu, X., Sun, J., Wang, B., Wang, Y., Yang, M., Wei, Y., Elchalakani, M., Li, D. and Wang, X. (2023), "AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition", Constr. Build. Mater., 375 130898. https://doi.org/10.1016/j.conbuildmat.2023.130898.
  68. Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2020), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory", Mech. Adv. Mater. Struct., 27(1), 3-11. https://doi.org/10.1080/15376494.2018.1444216.
  69. Zhu, X., Lu, Z., Wang, Z., Xue, L. and Ebrahimi-Mamaghani, A. (2020), "Vibration of spinning functionally graded nanotubes conveying fluid", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01123-7