DOI QR코드

DOI QR Code

Thermal radiation and some physical combined effects on an asymmetric peristaltically vertical channel of nanofluid flow

  • Amira S. Awaad (Department of Mathematics, College of Science and Humanities in Al-Kharj Prince Sattam Bin Abdulaziz University) ;
  • Zakaria M. Gharsseldien (Department of Mathematics, Faculty of Science, Al-Azhar University)
  • Received : 2023.09.22
  • Accepted : 2024.05.24
  • Published : 2024.06.25

Abstract

This study explained the effects of radiation, magnetic field, and nanoparticle shape on the peristaltic flow of an Upper-Convected Maxwell nanofluid through a porous medium in an asymmetric channel for a better understanding of cooling and heating mechanisms in the presence of magnetic fields. These phenomena are modeled mathematically as a system of non-linear differential equations, that are solved under long-wavelength approximation and low Reynolds number conditions using the perturbation method. The results for nanofluid and temperature described the behavior of the pumping characteristics during their interaction with (the vertical position, thermal radiation, the shape of the nanoparticle, and the magnetic field) analytically and explained graphically. Also, the combined effects of thermal radiation parameters and some physical parameters on pressure rise, pressure gradient, velocity, and heat distribution are pointed out. Qualitatively, a reverse velocity appears with combined high radiation and Grashof number or combined high radiation and low volume flow rate. At high radiation, the spherical nanoparticle shape has the greatest effect on heat distribution.

Keywords

References

  1. Ahmadi Azar, A., Jalili, B., Jalili, P. and Ganji, D.D. (2023), "Investigating the effect of structural changes of two stretching disks on the dynamics of the MHD model", Sci. Rep., 13(1), 1-19. https://doi.org/10.1016/j.devcel.2021.06.008
  2. Ahmed, B., Hayat, T., Muhammad,k. and Alsaedi, A. (2023), "MHD peristaltic activity of powell-eyring nanomaterial through porous space with slip effects", Case Stud. Therm. Eng., 45. https://doi.org/10.1016/j.csite.2023.103001.
  3. Ahmed, B., Hayat,T., Abbasi, F.M. and Alsaedi, A. (2021), "Mixed convection and thermal radiation effect on MHD peristaltic motion of Powell-Eyring nanofluid", Int. Commun. Heat Mass Transf., 126. https://doi.org/10.1016/j.icheatmasstransfer.2021.105320.
  4. Ahmed, B., Liu, D., Zhang, Y. and Hussien, M.A. (2024), "Peristaltic pumping of convective nanofluid with magnetic field and thermal radiation in a porous channel", Case Stud. Therm. Eng., 53. https://doi.org/10.1016/j.csite.2023.103918.
  5. Azam, M. (2022), "Effects of Cattaneo-Christov heat flux and nonlinear thermal radiation on mhd maxwell nanofluid with arrhenius activation energy", Case Stud. Therm. Eng., 34. https://doi.org/10.1016/j.csite.2022.102048.
  6. Daryayehsalameh, B., Ayari,M.A., Tounsi,A., Khandakar,A. and Vaferi,B. (2022), "Differentiation among stability regimes of Alumina-Water nanofluids using smart classifiers", Adv. Nano Res., 12(5), 489-499. https://doi.org/10.12989/anr.2022.12.5.489.
  7. Eldabe, N.T., Asar, A.S. and Shawky, H.M. (2020). "Effects of slip velocity and hall currents on peristaltic transport of Bingham-Papanastasiou fluid with heat transfer", Appl. Math. Inf. Sci., 14(1), 31-40. https://doi.org/10.18576/AMIS/140104.
  8. Gharsseldien, Z. M. and Awaad, A.S. (2022), "Maxwell nanofluid flow through a heated vertical channel with peristalsis and magnetic field", Adv. Nano Res., 13(1), 77-86. https://doi.org/10.12989/anr.2022.13.1.077.
  9. Gharsseldien, Z.M., Mekheimer, Kh.S. and Awad, A.S. (2010), "The influence of slippage on trapping and reflux limits with peristalsis through an asymmetric channel", Appl. Bionics. Biomech., 7(2), 95-108. https://doi.org/10.1080/11762321003747099.
  10. Hamilton, R.L. (1962), "Thermal conductivity of heterogeneous two-component systems", Ind. Eng. Chem. Fundam., 1(3), 187-191. https://doi.org/10.1021/i160003a005.
  11. Hussain, M., Sharif, H., Khadimallah, M.A., Mouldi,A., Loukil, H., Ali, M.R. and Tounsi, A. (2023), "Shooting method applied to porous rotating disk: Darcy-Forchheimer flow of nanofluid", Adv. Nano Res., 14(3), 295-302. https://doi.org/10.12989/anr.2023.14.3.295.
  12. Iqbal, J., Abbasi, F.M., Alkinidri, M. and Alahmadi, H. (2023), "Heat and mass transfer analysis for MHD bioconvection peristaltic motion of Powell-Eyring nanofluid with variable thermal characteristics", Case Stud. Therm. Eng., 43. https://doi.org/10.1016/j.csite.2022.102692.
  13. Jafaripournimchahi, A., Shateri, A., Jalili, B., Jalili, P., Ganji, D.D. (2024), "The effects of magnetic field and thermal radiation on the mixed convection of Al2O3-Cu/water hybrid nanofluid over a permeable vertical flat plate", Mod. Phys. Lett. B., 2450242. https://doi.org/10.1142/S0217984924502427
  14. Kazemia, M.H. and Nasr, M.A.B.M. (2014), "Convective heat transfer of MWCNT / HT-B oil nanofluid inside micro-fin helical tubes under uniform wall temperature condition", Adv. Nano Res., 2(2), 99-109. https://doi.org/10.12989/anr.2014.2.2.099.
  15. Kodi, R., Ganteda, C., Dasore, A., Kumar, M.L., Laxmaiah, G., Hasan, M.A., Islam, A. and Razak, A. (2023), "Influence of MHD mixed convection flow for maxwell nanofluid through a vertical cone with porous material in the existence of variable heat conductivity and diffusion", Case Stud. Therm. Eng., 44. https://doi.org/10.1016/j.csite.2023.102875.
  16. Mirzaei, A., Jalili, P., Afifi, M.D., Jalili, B. and Ganji, D.D. (2023), "Convection heat transfer of MHD fluid flow in the circular cavity with various obstacles: finite element approach", Int. J. Thermofl., 20. https://doi.org/10.1016/j.ijft.2023.100522.
  17. Noreen, S. (2018), "Peristaltically assisted nanofluid transport in an asymmetric channel.", Karbala Int. J. Mod. Sci., 4(1), 35-49. https://doi.org/10.1016/j.kijoms.2017.10.005.
  18. Rafiq, M., Yasmin, H., Hayat, T. and Alsaadi,F. (2019), "Effect of hall and ion-slip on the peristaltic transport of nanofluid: A biomedical application", Chin. J. Phys., 60, 208-227. https://doi.org/10.1016/j.cjph.2019.04.016.
  19. Rezaee, M., Yeganegi, A., Namvarpour, M. and Ghassemi, H. (2022), "Fluid flow dynamics in deformed carbon nanotubes with unaffected cross-section", Adv. Nano Res., 12(3), 253-261. https://doi.org/10.12989/anr.2022.12.3.253.
  20. Shah, S., Rafiq,N., Abdullah, F.A., Atif, S.M. and Abbas, M. (2022), "Slip and radiative effects on MHD Maxwell nanofluid with non-Fourier and non-Fick laws in a porous medium", Case Stud. Therm. Eng., 30. https://doi.org/10.1016/j.csite.2022.101779.
  21. Sharif, H., Khadimallah, M.A., Naeem, M.N., Hussain, M., Hussain, S. and Tounsi, A. (2021), "Flow of MHD Powell-Eyring nanofluid: heat absorption and Cattaneo-Christov heat flux model", Adv. Nano Res., 10(3). https://doi.org/10.12989/anr.2021.10.3.221.
  22. Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D. and Soleimani, S. (2014), "Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field", J. Mol. Liq, 193, 174-184. https://doi.org/10.1016/j.molliq.2013.12.023.
  23. Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D., Soleimani, S. and Seyyedi, S.M. (2012), "Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field", Int. Commun. Heat Mass Transf., 39(9), 1435-1443. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.026.
  24. Sheikholeslami, M. and Ganji, D.D.. (2017), Applications of Nanofluid for Heat Transfer Enhancement, Elsevier Ltd., New York, U.S.A.
  25. Sobamowo, M.G., Yinusa, A.A. and Oluwo, A.A., (2018), "Slip analysis of magnetohydrodynamics flow of an upper-convected Maxwell viscoelastic nanofluid in a permeable channel embedded in a porous medium", Aeronaut. Aerosp. Open Access J., 2(5). https://doi.org/10.15406/aaoaj.2018.02.00065.
  26. Turns, S.R. and Kraige, D.R. (2007), Property Tables for Thermal Fluids Engineering, Cambridge University Press, New York, U.S.A.
  27. Vajravelu, K., Sreenadh, S. and Lakshminarayana, P. (2011), "The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum", Commun. Nonlinear Sci. Numer. Simul., 16(8), 3107-3125. https://doi.org/10.1016/j.cnsns.2010.11.001.
  28. Vijay, N. and Sharma, K., (2023), "Dynamics of stagnation point flow of Maxwell nanofluid with combined heat and mass transfer effects: a numerical investigation", Int. Commun. Heat Mass Transf., 141. https://doi.org/10.1016/j.icheatmasstransfer.2022.106545.
  29. Zainal, N.A., Nazar, R., Naganthran, K. and Pop, I., (2022), "The impact of thermal radiation on maxwell hybrid nanofluids in the stagnation region", Nanomater., 12(7). https://doi.org/10.3390/nano12071109.