과제정보
본 연구는 산업통산자원부 바이오산업기술개발사업 글로벌진출형 디지털치료기기 개발지원 세부사업(20018535)의 지원을 받아 수행되었습니다.
참고문헌
- Jung KH, Torrone D, Lovinsky-Desir S, Perzanowski M, Bautista J, Jezioro JR, et al. Short-term exposure to PM(2.5) and vanadium and changes in asthma gene DNA methylation and lung function decrements among urban children. Respir Res. 2017;18(1):63.
- Labarca G, Drake L, Horta G, Jantz MA, Mehta HJ, Fernandez-Bussy S, et al. Association between inflammatory bowel disease and chronic obstructive pulmonary disease: a systematic review and meta-analysis. BMC Pulm Med. 2019;19(1):186.
- Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung SH, Mortimer K, et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies' Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest. 2019;155(2):409-16. https://doi.org/10.1016/j.chest.2018.10.042
- Ma Y, Zhao C, Zhao Y, Lu J, Jiang H, Cao Y, et al. Telemedicine application in patients with chronic disease: a systematic review and meta-analysis. BMC Med Inform Decis Mak. 2022;22(1):105.
- Wang H, Yuan X, Wang J, Sun C, Wang G. Telemedicine maybe an effective solution for management of chronic disease during the COVID-19 epidemic. Prim Health Care Res Dev. 2021;22:e48.
- D'Onofrio KL, Zeng FG. Tele-Audiology: Current State and Future Directions. Front Digit Health. 2021;3:788103.
- Dendere R, Myburg N, Douglas TS. A review of cellphone microscopy for disease detection. J Microsc. 2015;260(3):248-59. https://doi.org/10.1111/jmi.12307
- Mousseau S, Lapointe A, Gravel J. Diagnosing acute otitis media using a smartphone otoscope; a randomized controlled trial. Am J Emerg Med. 2018;36(10):1796-801. https://doi.org/10.1016/j.ajem.2018.01.093
- Hafke-Dys H, Kuznar-Kaminska B, Grzywalski T, Maciaszek A, Szarzynski K, Kocinski J. Artificial Intelligence Approach to the Monitoring of Respiratory Sounds in Asthmatic Patients. Front Physiol. 2021;12:745635.
- Kim Y, Hyon Y, Lee S, Woo SD, Ha T, Chung C. The coming era of a new auscultation system for analyzing respiratory sounds. BMC Pulm Med. 2022;22(1):119.
- Kim Y, Hyon Y, Woo SD, Lee S, Lee SI, Ha T, et al. Evolution of the Stethoscope: Advances with the Adoption of Machine Learning and Development of Wearable Devices. Tuberc Respir Dis (Seoul). 2023;86(4):251-63. https://doi.org/10.4046/trd.2023.0065
- McDaniel NL, Novicoff W, Gunnell B, Cattell Gordon D. Comparison of a Novel Handheld Telehealth Device with Stand-Alone Examination Tools in a Clinic Setting. Telemed J E Health. 2019;25(12):1225-30. https://doi.org/10.1089/tmj.2018.0214
- Cha D, Pae C, Seong SB, Choi JY, Park HJ. Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database. EBioMedicine. 2019;45:606-14. https://doi.org/10.1016/j.ebiom.2019.06.050
- Chen J, Sun K, Sun Y, Li X. Signal Quality Assessment of PPG Signals using STFT Time-Frequency Spectra and Deep Learning Approaches. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:1153-6.
- Goto R, Horimoto T, Koyama S, Suzuki T, Tsutsumi J, Matsuyama T, et al. Detection of Heartbeat Components Through Doppler Radar Systems Using Semantic Segmentation and Non-Harmonic Analysis. IEEE Access. 2024;12:32349-60.
- Khan MA, Kwon S, Choo J, Hong SM, Kang SH, Park IH, et al. Automatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networks. Neural Netw. 2020;126:384-94. https://doi.org/10.1016/j.neunet.2020.03.023
- Park YS, Jeon JH, Kong TH, Chung TY, Seo YJ. Deep Learning Techniques for Ear Diseases Based on Segmentation of the Normal Tympanic Membrane. Clin Exp Otorhinolaryngol. 2023;16(1):28-36. https://doi.org/10.21053/ceo.2022.00675
- Yadav K, Tiwari S, Jain A, Dafhalla AKY. Deep learning based cardiovascular disease diagnosis system from heartbeat sound. International Journal of Speech Technology. 2021.
- Rao D, Singh R, Kamath SK, Pendekanti SK, Pai D, Kolekar SV, et al. OTONet: Deep Neural Network for Precise Otoscopy Image Classification. IEEE Access. 2024;12:7734-46. https://doi.org/10.1109/ACCESS.2024.3351668
- Chowdhury MEH, Khandakar A, Alzoubi K, Mansoor S, A MT, Reaz MBI, et al. Real-Time Smart-Digital Stethoscope System for Heart Diseases Monitoring. Sensors (Basel). 2019;19(12).
- Quiceno AF, Delgado E, Vallverd M, Matijasevic AM, Castellanos-Domnguez G. Effective phonocardiogram segmentation using nonlinear dynamic analysis and high-frequency decomposition. In: 2008 Computers in Cardiology. IEEE; 2008.
- Lee K, Ji Y, Jeon Y, Park YC. Development and Implementation of Noise-Canceling Technology for Digital Stethoscope. Journal of Biomedical Engineering Research. 2013;34(4):204-11. https://doi.org/10.9718/JBER.2013.34.4.204
- Tympanic membrane / eardrum dataset / otitis media. Published online June 6, 2022.
- King E. Heartbeat Sounds. Published online November 27, 2016.
- Akay M, Du Y, Sershen CL, Wu M, Chen TY, Assassi S, et al. Deep Learning Classification of Systemic Sclerosis Skin Using the MobileNetV2 Model. IEEE Open J Eng Med Biol. 2021;2:104-10. https://doi.org/10.1109/OJEMB.2021.3066097
- Dong N, Zhao L, Wu CH, Chang JF. Inception v3 based cervical cell classification combined with artificially extracted features. Applied Soft Computing. 2020;93.
- Guefrechi S, Jabra MB, Ammar A, Koubaa A, Hamam H. Deep learning based detection of COVID-19 from chest X-ray images. Multimed Tools Appl. 2021;80(21-23):31803-20. https://doi.org/10.1007/s11042-021-11192-5
- Younis A, Qiang L, Nyatega CO, Adamu MJ, Kawuwa HB. Brain Tumor Analysis Using Deep Learning and VGG-16 Ensembling Learning Approaches. Applied Sciences. 2022;12(14).
- Ma N, Zhang X, Zheng H-T, Sun J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. Computer Vision - ECCV 2018. Lecture Notes in Computer Science2018. p. 122-38.
- Ji Q, Huang J, He W, Sun Y. Optimized Deep Convolutional Neural Networks for Identification of Macular Diseases from Optical Coherence Tomography Images. Algorithms. 2019;12(3).