Acknowledgement
이 연구는 2022년도 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임(KRIT-CT-22-081, 무기체계 CBM+ 특화연구센터).
References
- Y. J. Jung, J. S. Hong, S. I. Kim, S. W. Kang(2024), "A Review on Ammunition Shelf-life Prediction Research for Preventing Accidents Caused by Defective Ammunition." Journal of Korea Safety Management & Science, 26(1):39-44.
- Ministry of National Defense(2023), Principle Plan of ROK's Defense Innovation 4.0.
- Korea Institute of Science and Technology Information (2023), Weapon System CBM+ Research Center.
- J. Y. Kim, H. S. Shim, J. S. Son, Y. Y. Hwang(2023), "A Study on the Metadata Schema for the Collection of Sensor Data in Weapon Systems." Journal of Internet Computing and Services, 24(6):161-169. https://doi.org/10.7472/JKSII.2023.24.6.161
- J. G. Choi, B. K. Kim, Y. S. Chang(2022), "Building plan research of Smart Ammunition Logistics System based on the 4th industrial technology." Journal of Internet Computing and Services, 23(1):135-145. https://doi.org/10.7472/JKSII.2022.23.1.135
- K. J. Jo, H. C. Jung, H. H. Hong(2023), "A Study on the Test Standard according to Reliability and Confidence Level of the Ammunition." Journal of the Korea Academia-Industrial cooperation Society, 24(9):562-568. https://doi.org/10.5762/KAIS.2023.24.9.562
- K. J. Jo, Y. C. Kim, S. H. Gu(2023), "A Study on the Standard Establishment of LOT Setting for the Guided Missile ASRP." Journal of the Korea Academia-Industrial cooperation Society, 24(4):288-294. https://doi.org/10.5762/KAIS.2023.24.4.288
- W. S. Kim, S. H. Cho, K. S. Yoon(2024), "A study on The Shelf-life of Catridge, 81MM High-Explosive for Mortar Using Regression Analysis." Journal of the Korea Academia-Industrial cooperation Society, 25(1):122-131. https://doi.org/10.5762/KAIS.2024.25.1.122
- S. H. Cho, W. S. Kim, J. H. Lee(2023), "A Study on the Reliability and Shelf-life of Floating HC smoke pot." Journal of the Korea Academia-Industrial cooperation Society, 24(11):304-312. https://doi.org/10.5762/KAIS.2023.24.11.304
- Ammunition Support Command(2019), Ammunition Inspection and Condition Classification Standards.
- Ministry of National Defense(2020), Defense Logistics Integrated Information System.
- H. S. Ko, J. W. Heo, M. H. Kim, W. M. Shin(2022), "Development of artificial intelligence ammunition inspection software using laser displacement sensor and military utilization plan." Defense Technology, 520:160-175.
- Y. J. Jung, T. H. Kang, J. I. Park, J. Y. Cho, J. S. Hong, S. W. Kang(2024), "Methodology for Variable Optimization in Injection Molding Process." Journal of Korean Society for Quality Management, 52(1):43-56. https://doi.org/10.7469/JKSQM.2024.52.1.43
- Y. Freund, R. E. Schapire(1999), "A Short Introduction to Boosting." Journal of Japanese Society for Artificial Intelligence, 14(5):771-780.
- J. H. Friedman(2001), "Greedy Function Approximation: A Gradient Boosting Machine." The Annals of Statistics, 29(5):1189-1232. https://doi.org/10.1214/aos/1013203451
- T. Chen, C. Guestrin(2016), "XGBoost: A Scalable Tree Boosting System." In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: 785-794.
- G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T. Y. Liu(2017), "LightGBM: A Highly Efficient Gradient Boosting Decision Tree." Advances in Neural Information Processing Systems, 30.
- L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, A. Gulin(2018), "CatBoost: unbiased boosting with categorical features." Advances in Neural Information Processing Systems, 31.
- Y. J. Jung, C. Y. Jang, S. W. Kang(2022), "Elevator Falut Classification using Deep Learning Model." Journal of Korea Safety Management & Science, 24(4):1-7.