Acknowledgement
This paper is supported by the Key Technologies R & D Program of Henan Provincial Department of Science and Technology (232102320186), the Open Research Subject of Henan key Laboratory of Grain and Oil Storage Facility & Safety project (2022KF02 and 2022KF04), and the Research Fund for the Doctoral Program of Henan university of technology (2020BS044).
References
- Arivoli, M., Biswas, A., Burroughs, N., Wilson, P., Salzman, C., Kakembo, N., Mugaga, J., Ssekitoleko, R.T., Saterbak, A. and Fitzgerald, T.N. (2020), "Multidisciplinary development of a low-cost gastroschisis silo for use in sub-saharan africa", J. Surg. Res., 255, 565-574. https://doi.org/10.1016/j.jss.2020.05.037.
- Bayraktar, A., Sevim, B., Altunisik, A.C. and Turker, T. (2010), "Effect of the model updating on the earthquake behavior of steel storage tanks", J. Constr. Steel Res., 66(3), 462-469. https://doi.org/10.1016/j.jcsr.2009.10.006.
- Chen, Q., Li, R., Xiu, W., Zivkovic, V. and Yang, H. (2022), "Relationship between mass discharge rate and granular temperature of silo flow with variance of outlets", Particuology, 63, 76-82. https://doi.org/10.1016/j.partic.2021.05.001.
- Chen, Z., Li, X., Yang, Y., Zhao, S. and Fu, Z. (2018), "Experimental and numerical investigation of the effect of temperature patterns on behavior of large scale silo", Eng. Fail. Anal., 91, 543-553. https://doi.org/10.1016/j.engfailanal.2018.04.043.
- Chowdhury, I.R. and Singh, J.P. (2013), "Dynamic response of rectangular bunker walls considering earthquake force", Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management, Springer, India. https://doi.org/10.1007/978-81-322-0757-3_36.
- Djelloul, Z. and Mohammed, D. (2018), "Contribution to the seismic behaviour of steel silos: Full finite-element analysis versus the Eurocode approach", Asian J. Civil Eng., 19, 757-773. https://doi.org/10.1007/s42107-018-0062-z.
- Durmus, A. and Livaoglu, R. (2015), "A simplified 3 D.O.F. model of A FEM model for seismic analysis of a silo containing elastic material accounting for soil-structure interaction", Soil Dyn. Earthq. Eng., 77, 1-14. https://doi.org/10.1016/j.soildyn.2015.04.015.
- Gandia, R.M., Gomes, F.C., Paula, W.C.D. and Aguado Rodriguez, P.J. (2021), "Evaluation of pressures in slender silos varying hopper angle and silo slenderness", Powder Technol., 394, 478-495. https://doi.org/10.1016/j.powtec.2021.08.087.
- Giresini, L. and Butenweg, C. (2019), Earthquake Resistant Design of Structures According to Eurocode 8, Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57550-5_4.
- Guo, K., Zhou, C., Meng, L. and Zhang, X. (2016), "Seismic vulnerability assessment of reinforced concrete silo considering granular material-structure interaction", Struct. Des. Tall Spec. Build., 25, 1011-1030. https://doi.org/10.1002/tal.1295.
- Hasan, M., Mubarak, A., Fikri, R. and Mahlil (2022), "Crack and strength assessment of reinforced concrete cement plant blending silo structure", Mater. Today Proc., 58, 1312-1318. https://doi.org/10.1016/j.matpr.2022.02.171.
- Hashemi, S., Kianoush, R. and Khoubani, M. (2022), "A mechanical model for soil-rectangular tank interaction effects under seismic loading", Soil Dyn. Earthq. Eng., 153, 107092. https://doi.org/10.1016/j.soildyn.2021.107092.
- Holler, S. and Meskouris, K. (2006), "Granular material silos under dynamic excitation: Numerical simulation and experimental validation", J. Struct. Eng., 132, 1573-1579. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:10(1573).
- Jing, H., Chen, H., Yang, J. and Li, P. (2022), "Shaking table tests on a small-scale steel cylindrical silo model in different filling conditions", Struct., 37, 698-708. https://doi.org/10.1016/j.istruc.2022.01.026.
- Khalil, M., Ruggieri, S. and Uva, G. (2022), "Assessment of structural behavior, vulnerability, and risk of industrial silos: State-of-the-art and recent research trends", Appl. Sci., 12(6), 3006. https://doi.org/10.3390/app12063006.
- Kirtas, E., Rovithis, E. and Makra, K. (2020), "On the modal response of an instrumented steel water-storage tank including soil-structure interaction", Soil Dyn. Earthq. Eng., 135, 106198. https://doi.org/10.1016/j.soildyn.2020.106198.
- Li, X., Ding, Y.G., Liu, Q. and Xu, Q. (2022), "Experimental study on horizontal pressure of column-supported concrete group silos under earthquake force", J. Asian Arch. Build. Eng., 22, 2827-2838. https://doi.org/10.1080/13467581.2022.2160637.
- Maj, M. (2017), "Some causes of reinforced concrete silos failure", Procedia Eng., 172, 685-691. https://doi.org/10.1016/j.proeng.2017.02.081.
- Mansour, S., Silvestri, S. and Sadowski, A.J. (2022), "The 'miniature silo' test: A simple experimental setup to estimate the effective friction coefficient between the granular solid and a horizontally-corrugated cylindrical metal silo wall", Powder Technol., 399, 117212. https://doi.org/10.1016/j.powtec.2022.117212.
- Maraveas, C. (2020), "Concrete silos: Failures, design issues and repair/strengthening methods", Appl. Sci., 10(11), 3938. https://doi.org/10.3390/app11125675.
- Nielsen, J. (1998), "Pressures from flowing granular solids in silos", Philos. Trans. Roy. Soc. London. Ser. A: Math., Phys. Eng. Sci., 356, 2667-2684. https://doi.org/10.1098/rsta.1998.0292.
- Pascot, A., Gaudel, N., Antonyuk, S., Bianchin, J. and De Richter, S.K. (2020), "Influence of mechanical vibrations on quasi-2D silo discharge of spherical particles", Chem. Eng. Sci., 224, 115749. https://doi.org/10.1016/j.ces.2020.115749.
- Pieraccini, L., Palermo, M., Silvestri, S., Gasparini, G. and Trombetti, T. (2016), "Seismic horizontal forces exerted by granular material on flat bottom silos: experimental and analytical results", IABSE Congress: Challenges in Design and Construction of an Innovative and Sustainable Built Environment, Stockholm, Sweden, September.
- Pieraccini, L., Silvestri, S. and Trombetti, T. (2015), "Refinements to the Silvestri's theory for the evaluation of the seismic actions in flat-bottom silos containing grain-like material", Bull. Earthq. Eng., 13(11), 3493-3525. https://doi.org/10.1007/s10518-015-9786-2.
- Sezen, H., Livaoglu, R. and Dogangun, A. (2008), "Dynamic analysis and seismic performance evaluation of above-ground liquid-containing tanks", Eng. Struct., 30(3), 794-803. https://doi.org/10.1016/j.engstruct.2007.05.002.
- Silvestri, S., Gasparini, G., Trombetti, T. and Foti, D. (2012), "On the evaluation of the horizontal forces produced by grain-like material inside silos during earthquakes", Bull. Earthq. Eng., 10(5), 1535-1560. https://doi.org/10.1007/s10518-012-9370-y.
- Silvestri, S., Ivorra, S., Chiacchio, L.D., Trombetti, T., Foti, D., Gasparini, G., Pieraccini, L., Dietz, M. and Taylor, C.A. (2016), "Shaking-table tests of flat-bottom circular silos containing grain-like material", Earthq. Eng. Struct. Dyn., 45, 69-89. https://doi.org/10.1002/eqe.2617.
- Silvestri, S., Mansour, S., Marra, M., Distl, J., Furinghetti, M., Lanese, I., ... & Weber, F. (2021), "Shaking table tests of a full-scale flat-bottom manufactured steel silo filled with wheat: Main results on the fixed-base configuration", Earthq. Eng. Struct. Dyn., 51, 169-190. https://doi.org/10.1002/eqe.3561.
- Tatko, R. and Kobielak, S. (2008), "Horizontal bulk material pressure in silo subjected to impulsive load", Shock Vib., 15, 543-550. https://doi.org/10.1155/2008/289317.
- Xu, Q., Zhang, H.J., Liu, Q. and Wang, L. (2020), "Seismic analysis on reinforced concrete group silos through shaking table tests", Struct. Concrete, 22, 1285-1296. https://doi.org/10.1002/suco.202000207.
- Yang, J., Zhang, F., Li, P. and Jing, H. (2023), "Seismic performance of column-bearing silo structure with granular materials considering SSI effect", Struct., 47, 595-606. https://doi.org/10.1016/j.istruc.2022.11.064.