DOI QR코드

DOI QR Code

Vinpocetine, a phosphodiesterase 1 inhibitor, mitigates atopic dermatitis-like skin inflammation

  • Yeon Jin Lee (Department of Pathophysiology, College of Pharmacy, Chung-Ang University) ;
  • Jin Yong Song (Department of Pathophysiology, College of Pharmacy, Chung-Ang University) ;
  • Su Hyun Lee (Department of Pathophysiology, College of Pharmacy, Chung-Ang University) ;
  • Yubin Lee (Department of Pathophysiology, College of Pharmacy, Chung-Ang University) ;
  • Kyu Teak Hwang (Department of Pathophysiology, College of Pharmacy, Chung-Ang University) ;
  • Ji-Yun Lee (Department of Pathophysiology, College of Pharmacy, Chung-Ang University)
  • Received : 2023.12.28
  • Accepted : 2024.02.03
  • Published : 2024.07.01

Abstract

Atopic dermatitis (AD) is the most common inflammatory pruritic skin disease worldwide, characterized by the infiltration of multiple pathogenic T lymphocytes and histological symptoms such as epidermal and dermal thickening. This study aims to investigate the effect of vinpocetine (Vinp; a phosphodiesterase 1 inhibitor) on a 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD-like model. DNCB (1%) was administered on day 1 in the AD model. Subsequently, from day 14 onward, mice in each group (Vinp-treated groups: 1 mg/kg and 2 mg/kg and dexamethasone-treated group: 2 mg/kg) were administered 100 µl of a specific drug daily, whereas 0.2% DNCB was administered every other day for 30 min over 14 days. The Vinp-treated groups showed improved Eczema Area and Severity Index scores and trans-epidermal water loss, indicating the efficacy of Vinp in improving AD and enhancing skin barrier function. Histological analysis further confirmed the reduction in hyperplasia of the epidermis and the infiltration of inflammatory cells, including macrophages, eosinophils, and mast cells, with Vinp treatment. Moreover, Vinp reduced serum concentrations of IgE, interleukin (IL)-6, IL-13, and monocyte chemotactic protein-1. The mRNA levels of IL-1β, IL-6, Thymic stromal lymphopoietin, and transforming growth factor-beta (TGF-β) were reduced by Vinp treatment. Reduction of TGF-β protein by Vinp in skin tissue was also observed. Collectively, our results underscore the effectiveness of Vinp in mitigating DNCB-induced AD by modulating the expression of various biomarkers. Consequently, Vinp is a promising therapeutic candidate for treating AD.

Keywords

Acknowledgement

This research was supported by the Chung-Ang University Research Scholarship Grants in 2022.

References

  1. Magnifico I, Petronio Petronio G, Venditti N, Cutuli MA, Pietrangelo L, Vergalito F, Mangano K, Zella D, Di Marco R. Atopic dermatitis as a multifactorial skin disorder. Can the analysis of pathophysiological targets represent the winning therapeutic strategy? Pharmaceuticals (Basel). 2020;13:411.
  2. Lee J, Park L, Kim H, Rho BI, Han RT, Kim S, Kim HJ, Na HS, Back SK. Adipose-derived stem cells decolonize skin Staphylococcus aureus by enhancing phagocytic activity of peripheral blood mononuclear cells in the atopic rats. Korean J Physiol Pharmacol. 2022;26:287-295.
  3. Kim BE, Leung DY. Epidermal barrier in atopic dermatitis. Allergy Asthma Immunol Res. 2012;4:12-16.
  4. Lee HJ, Lee SH. Epidermal permeability barrier defects and barrier repair therapy in atopic dermatitis. Allergy Asthma Immunol Res. 2014;6:276-287.
  5. Fania L, Moretta G, Antonelli F, Scala E, Abeni D, Albanesi C, Madonna S. Multiple roles for cytokines in atopic dermatitis: from pathogenic mediators to endotype-specific biomarkers to therapeutic targets. Int J Mol Sci. 2022;23:2684.
  6. Akdis CA, Arkwright PD, Bruggen MC, Busse W, Gadina M, Guttman-Yassky E, Kabashima K, Mitamura Y, Vian L, Wu J, Palomares O. Type 2 immunity in the skin and lungs. Allergy. 2020;75:1582-1605.
  7. Haddad EB, Cyr SL, Arima K, McDonald RA, Levit NA, Nestle FO. Current and emerging strategies to inhibit type 2 inflammation in atopic dermatitis. Dermatol Ther (Heidelb). 2022;12:1501-1533.
  8. Biedermann T, Skabytska Y, Kaesler S, Volz T. Regulation of T cell immunity in atopic dermatitis by microbes: the Yin and Yang of cutaneous inflammation. Front Immunol. 2015;6:353.
  9. Kim JM, Park SH. Risk and benefit of steroid therapy. Korean J Med. 2009;77:298-303.
  10. Worm M, Francuzik W, Kraft M, Alexiou A. Modern therapies in atopic dermatitis: biologics and small molecule drugs. J Dtsch Dermatol Ges. 2020;18:1085-1092.
  11. Bollen E, Prickaerts J. Phosphodiesterases in neurodegenerative disorders. IUBMB Life. 2012;64:965-970.
  12. Reed TM, Browning JE, Blough RI, Vorhees CV, Repaske DR. Genomic structure and chromosome location of the murine PDE1B phosphodiesterase gene. Mamm Genome. 1998;9:571-576.
  13. Lee HJ, An S, Bae S, Lee JH. Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmia-associated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells. Korean J Physiol Pharmacol. 2022;26:113-123.
  14. Navarro J, Punzon C, Jimenez JL, Fernandez-Cruz E, Pizarro A, Fresno M, Munoz-Fernandez MA. Inhibition of phosphodiesterase type IV suppresses human immunodeficiency virus type 1 replication and cytokine production in primary T cells: involvement of NF-kappaB and NFAT. J Virol. 1998;72:4712-4720.
  15. Guttman-Yassky E, Hanifin JM, Boguniewicz M, Wollenberg A, Bissonnette R, Purohit V, Kilty I, Tallman AM, Zielinski MA. The role of phosphodiesterase 4 in the pathophysiology of atopic dermatitis and the perspective for its inhibition. Exp Dermatol. 2019;28:3-10.
  16. Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An overview of PDE4 inhibitors in clinical trials: 2010 to early 2022. Molecules. 2022;27:4964.
  17. Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M. Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol. 2008;39:127-132.
  18. Omar F, Findlay JE, Carfray G, Allcock RW, Jiang Z, Moore C, Muir AL, Lannoy M, Fertig BA, Mai D, Day JP, Bolger G, Baillie GS, Schwiebert E, Klussmann E, Pyne NJ, Ong ACM, Bowers K, Adam JM, Adams DR, et al. Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases. Proc Natl Acad Sci U S A. 2019;116:13320-13329.
  19. Damera G, Panettieri RA Jr. Does airway smooth muscle express an inflammatory phenotype in asthma? Br J Pharmacol. 2011;163:68-80.
  20. Qi P, Wei C, Kou D. Beneficial effects of naringenin and morin on interleukin-5 and reactive oxygen species production in BALB/c mice with ovalbumin-induced asthma. Korean J Physiol Pharmacol. 2021;25:555-564.
  21. Possa SS, Leick EA, Prado CM, Martins MA, Tiberio IF. Eosinophilic inflammation in allergic asthma. Front Pharmacol. 2013;4:46.
  22. Boswell-Smith V, Spina D, Page CP. Phosphodiesterase inhibitors. Br J Pharmacol. 2006;147 Suppl 1(Suppl 1):S252-S257.
  23. Zhang YS, Li JD, Yan C. An update on vinpocetine: new discoveries and clinical implications. Eur J Pharmacol. 2018;819:30-34.
  24. Jeon KI, Xu X, Aizawa T, Lim JH, Jono H, Kwon DS, Abe J, Berk BC, Li JD, Yan C. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci U S A. 2010;107:9795-9800.
  25. Choi WS, Kang HS, Kim HJ, Lee WT, Sohn UD, Lee JY. Vinpocetine alleviates lung inflammation via macrophage inflammatory protein-1E inhibition in an ovalbumin-induced allergic asthma model. PLoS One. 2021;16:e0251012.
  26. Kang HS, Song JY, Kim JH, Il Park T, Choi WS, Lee JY. Effects of vinpocetine on atopic dermatitis after administration via three different routes in HR-1 hairless mice. Pharmazie. 2022;77:9-13.
  27. Jin Y, Jeon H, Le Lam Nguyen T, Kim L, Heo KS. Human milk oligosaccharides 3'-sialyllactose and 6'-sialyllactose attenuate LPSinduced lung injury by inhibiting STAT1 and NF-κB signaling pathways. Arch Pharm Res. 2023;46:897-906.
  28. Nguyen TLL, Jin Y, Kim L, Heo KS. Inhibitory effects of 6'-sialyllactose on angiotensin II-induced proliferation, migration, and osteogenic switching in vascular smooth muscle cells. Arch Pharm Res. 2022;45:658-670.
  29. Wollenberg A, Ehmann LM. Long term treatment concepts and proactive therapy for atopic eczema. Ann Dermatol. 2012;24:253-260.
  30. Kitamura A, Takata R, Aizawa S, Watanabe H, Wada T. A murine model of atopic dermatitis can be generated by painting the dorsal skin with hapten twice 14 days apart. Sci Rep. 2018;8:5988.
  31. Beheshti R, Halstead S, McKeone D, Hicks SD. Understanding immunological origins of atopic dermatitis through multi-omic analysis. Pediatr Allergy Immunol. 2022;33:e13817.
  32. Boralevi F, Hubiche T, Leaute-Labreze C, Saubusse E, Fayon M, Roul S, Maurice-Tison S, Taieb A. Epicutaneous aeroallergen sensitization in atopic dermatitis infants - determining the role of epidermal barrier impairment. Allergy. 2008;63:205-210.
  33. Illi S, von Mutius E, Lau S, Nickel R, Gruber C, Niggemann B, Wahn U; Multicenter Allergy Study Group. The natural course of atopic dermatitis from birth to age 7 years and the association with asthma. J Allergy Clin Immunol. 2004;113:925-931.
  34. Palsson K, Slagor RM, Flachs EM, Norreslet LB, Agner T, Ebbehoj NE. Childhood atopic dermatitis is associated with a decreased chance of completing education later in life: a register-based cohort study. J Eur Acad Dermatol Venereol. 2021;35:1849-1858.
  35. Campanati A, Bianchelli T, Gesuita R, Foti C, Malara G, Micali G, Amerio P, Rongioletti F, Corazza M, Patrizi A, Peris K, Pimpinelli N, Parodi A, Fargnoli MC, Cannavo SP, Pigatto P, Pellacani G, Ferrucci SM, Argenziano G, Cusano F, et al; and collaborators. Comorbidities and treatment patterns in adult patients with atopic dermatitis: results from a nationwide multicenter study. Arch Dermatol Res. 2022;314:593-603. Erratum in: Arch Dermatol Res. 2022;314:605-607.
  36. Loden M. Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am J Clin Dermatol. 2003;4:771-788.
  37. Hanifin JM, Baghoomian W, Grinich E, Leshem YA, Jacobson M, Simpson EL. The eczema area and severity index-a practical guide. Dermatitis. 2022;33:187-192.
  38. Yosipovitch G, Papoiu AD. What causes itch in atopic dermatitis? Curr Allergy Asthma Rep. 2008;8:306-311.
  39. Wang S, Zhu L, Xu Y, Qin Z, Xu A. Salvianolic acid B ameliorates psoriatic changes in imiquimod-induced psoriasis on BALB/c mice by inhibiting inflammatory and keratin markers via altering phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Korean J Physiol Pharmacol. 2020;24:213-221.
  40. Ye N, Cai J, Dong Y, Chen H, Bo Z, Zhao X, Xia M, Han M. A multiomic approach reveals utility of CD45 expression in prognosis and novel target discovery. Front Genet. 2022;13:928328.
  41. Waddell LA, Lefevre L, Bush SJ, Raper A, Young R, Lisowski ZM, McCulloch MEB, Muriuki C, Sauter KA, Clark EL, Irvine KM, Pridans C, Hope JC, Hume DA. ADGRE1 (EMR1, F4/80) is a rapidlyevolving gene expressed in mammalian monocyte-macrophages. Front Immunol. 2018;9:2246.
  42. Tanaka Y, Delaporte E, Dubucquoi S, Gounni AS, Porchet E, Capron A, Capron M. Interleukin-5 messenger RNA and immunoreactive protein expression by activated eosinophils in lesional atopic dermatitis skin. J Invest Dermatol. 1994;103:589-592.
  43. Amin K. The role of mast cells in allergic inflammation. Respir Med. 2012;106:9-14.
  44. Dhakal H, Lee S, Kim EN, Choi JK, Kim MJ, Kang J, Choi YA, Baek MC, Lee B, Lee HS, Shin TY, Jeong GS, Kim SH. Gomisin M2 inhibits mast cell-mediated allergic inflammation via attenuation of FcεRI-mediated Lyn and Fyn activation and intracellular calcium levels. Front Pharmacol. 2019;10:869.