DOI QR코드

DOI QR Code

Ginsenoside Rg5, a potent agonist of Nrf2, inhibits HSV-1 infection-induced neuroinflammation by inhibiting oxidative stress and NF-κB activation

  • Buyun Kim (Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Young Soo Kim (Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Wei Li (Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Eun-Bin Kwon (Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Hwan-Suck Chung (Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Younghoon Go (Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Jang-Gi Choi (Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM))
  • Received : 2023.10.24
  • Accepted : 2024.01.22
  • Published : 2024.07.01

Abstract

Background: Herpes simplex virus type 1 (HSV-1), known to latently infect the host's trigeminal ganglion, can lead to severe herpes encephalitis or asymptomatic infection, potentially contributing to neurodegenerative diseases like Alzheimer's. The virus generates reactive oxygen species (ROS) that significantly impact viral replication and induce chronic inflammation through NF-κB activation. Nuclear factor E2-related factor 2 (Nrf2), an oxidative stress regulator, can prevent and treat HSV-1 infection by activating the passive defense response in the early stages of infection. Methods and results: Our study investigated the antiviral effects of ginsenoside Rg5, an Nrf2 activator, on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection inhibited Nrf2 activity in host cells, induced ROS/NF-κB signaling, and triggered inflammatory cytokines. However, treatment with ginsenoside Rg5 inhibited ROS/NF-κB signaling and reduced inflammatory cytokines through NRF2 induction. Interestingly, the Nrf2 inhibitor ML385 suppressed the expression of NAD(P)H quinone oxidoreductase 1(NQO1) and enhanced the expression of KEAP1 in HSV-1 infected cells. This led to the reversal of VP16 expression inhibition, a protein factor associated with HSV-1 infection, thereby promoting HSV-1 replication. Conclusion: These findings suggest for the first time that ginsenoside Rg5 may serve as an antiviral against HSV-1 infection and could be a novel therapeutic agent for HSV-1-induced neuroinflammation.

Keywords

Acknowledgement

This research was conducted with financial support from the National Research Foundation of Korea (NRF) under grants NRF-RS-2023-00212563 and NRF-2021R1A2C2094436. And this work was also supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI23C1368).

References

  1. James C, Harfouche M, Welton NJ, Turner KM, Abu-Raddad LJ, Gottlieb SL, et al. Herpes simplex virus: global infection prevalence and incidence estimates. Bull World Health Organ 2016;98:315-29. https://doi.org/10.2471/BLT.19.237149.2020. 
  2. Ayoub HH, Chemaitelly H, Abu-Raddad LJ. Characterizing the transitioning epidemiology of herpes simplex virus type 1 in the USA: model-based predictions. BMC Med 2019;17:57. https://doi.org/10.1186/s12916-019-1285-x. 
  3. Verzosa AL, McGeever LA, Bhark SJ, Delgado T, Salazar N, Sanchez EL. Herpes simplex virus 1 infection of neuronal and non-neuronal cells elicits specific innate immune responses and immune evasion mechanisms. Front Immunol 2021;12:644664. https://doi.org/10.3389/fimmu.2021.644664. 
  4. Rocha ND, de Moura SK, da Silva GAB, Mattiello R, Sato DK. Neurological sequelae after encephalitis associated with herpes simplex virus in children: systematic review and meta-analysis. BMC Infect Dis 2023;23:55. https://doi.org/10.1186/s12879-023-08007-3. 
  5. Bradshaw MJ, Venkatesan A. Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics 2016;13:493-508. https://doi.org/10.1007/s13311-016-0433-7. 
  6. Hu S, Sheng WS, Schachtele SJ, Lokensgard JR. Reactive oxygen species drive herpes simplex virus (HSV)-1-induced proinflammatory cytokine production by murine microglia. J Neuroinflammation 2011;8:123. https://doi.org/10.1186/1742-2094-8-123. 
  7. Zhang L, Wang J, Wang Z, Li Y, Wang H, Liu H. Upregulation of nuclear factor E2-related factor 2 (Nrf2) represses the replication of herpes simplex virus type 1. Virol J 2022;19:23. https://doi.org/10.1186/s12985-021-01733-7. 
  8. Lee C. Therapeutic modulation of virus-induced oxidative stress via the Nrf2-dependent antioxidative pathway. Oxid Med Cell Longev 2018;2018:6208067. https://doi.org/10.1155/2018/6208067. 
  9. Kavouras JH, Prandovszky E, Valyi-Nagy K, Kovacs SK, Tiwari V, Kovacs M, et al. Herpes simplex virus type 1 infection induces oxidative stress and the release of bioactive lipid peroxidation by-products in mouse P19N neural cell cultures. J Neurovirol 2007;13:416-25. https://doi.org/10.1080/13550280701460573. 
  10. Marques CP, Cheeran MC, Palmquist JM, Hu S, Urban SL, Lokensgard JR. Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis. J Immunol 2008;181:6417-26. https://doi.org/10.4049/jimmunol.181.9.6417. 
  11. Armien AG, Hu S, Little MR, Robinson N, Lokensgard JR, Low WC, et al. Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis. Brain Pathol 2010;20:738-50. https://doi.org/10.1111/j.1750-3639.2009.00354.x. 
  12. Schaedler S, Krause J, Himmelsbach K, Carvajal-Yepes M, Lieder F, Klingel K, et al. Hepatitis B virus induces expression of antioxidant response element-regulated genes by activation of Nrf2. J Biol Chem 2010;285:41074-86. https://doi.org/10.1074/jbc.M110.145862. 
  13. Hu B, Wei H, Song Y, Chen M, Fan Z, Qiu R, et al. NF-kappaB and Keap1 interaction represses Nrf2-mediated antioxidant response in rabbit hemorrhagic disease virus infection. J Virol 2020;94. https://doi.org/10.1128/JVI.00016-20.
  14. Yageta Y, Ishii Y, Morishima Y, Masuko H, Ano S, Yamadori T, et al. Role of Nrf2 in host defense against influenza virus in cigarette smoke-exposed mice. J Virol 2011;85:4679-90. https://doi.org/10.1128/JVI.02456-10. 
  15. Cho HY, Kleeberger SR. Association of Nrf2 with airway pathogenesis: lessons learned from genetic mouse models. Arch Toxicol 2015;89:1931-57. https://doi.org/10.1007/s00204-015-1557-y. 
  16. Kim SN, Ha YW, Shin H, Son SH, Wu SJ, Kim YS. Simultaneous quantification of 14 ginsenosides in Panax ginseng C.A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. J Pharm Biomed Anal 2007;45:164-70. https://doi.org/10.1016/j.jpba.2007.05.001. 
  17. Yun TK, Lee YS, Lee YH, Kim SI, Yun HY. Anticarcinogenic effect of Panax ginseng C.A. Meyer and identification of active compounds. J Kor Med Sci 2001;16(Suppl):S6-18. https://doi.org/10.3346/jkms.2001.16.S.S6. 
  18. Lee KY, Lee YH, Kim SI, Park JH, Lee SK. Ginsenoside-Rg5 suppresses cyclin E-dependent protein kinase activity via up-regulating p21Cip/WAF1 and down-regulating cyclin E in SK-HEP-1 cells. Anticancer Res 1997;17:1067-72. 
  19. Lee CH, Kim JM, Kim DH, Park SJ, Liu X, Cai M, et al. Effects of Sun ginseng on memory enhancement and hippocampal neurogenesis. Phytother Res 2013;27:1293-9. https://doi.org/10.1002/ptr.4873. 
  20. Kim EJ, Jung IH, Van Le TK, Jeong JJ, Kim NJ, Kim DH. Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J Ethnopharmacol 2013;146:294-9. https://doi.org/10.1016/j.jep.2012.12.047. 
  21. Feng SL, Luo HB, Cai L, Zhang J, Wang D, Chen YJ, et al. Ginsenoside Rg5 overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter: in vitro and in vivo study. J Ginseng Res 2020;44:247-57. https://doi.org/10.1016/j.jgr.2018.10.007. 
  22. Kim B, Kim YS, Hwang YH, Yang HJ, Li W, Kwon EB, et al. Quercus acuta Thunb. (Fagaceae) and its Component, isoquercitrin, inhibit HSV-1 replication by suppressing virus-induced ROS production and NF-kappaB activation. Antioxidants 2021;10. https://doi.org/10.3390/antiox10101638. 
  23. Kim B, Kwon EB, Yang HJ, Li W, Hwang YH, Kim YS, et al. Vaccinium bracteatum thunb extract inhibits HSV-1 infection by regulating ER stress and apoptosis. Antioxidants 2022;11. https://doi.org/10.3390/antiox11091773. 
  24. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605-12. https://doi.org/10.1002/jcc.20084. 
  25. Ogawa H, Fujikura D, Namba H, Yamashita N, Honda T, Yamada M. Nectin-2 acts as a viral entry mediated molecule that binds to human herpesvirus 6B glycoprotein B. Viruses 2022;14. https://doi.org/10.3390/v14010160. 
  26. Connolly SA, Landsburg DJ, Carfi A, Whitbeck JC, Zuo Y, Wiley DC, et al. Potential nectin-1 binding site on herpes simplex virus glycoprotein d. J Virol 2005;79:1282-95. https://doi.org/10.1128/JVI.79.2.1282-1295.2005. 
  27. Summers BC, Leib DA. Herpes simplex virus type 1 origins of DNA replication play no role in the regulation of flanking promoters. J Virol 2002;76:7020-9. https://doi.org/10.1128/jvi.76.14.7020-7029.2002. 
  28. Liu W, Fan Z, Han Y, Xu L, Wang M, Zhang D, et al. Activation of NF-kappaB signaling pathway in HSV-1-induced mouse facial palsy: possible relation to therapeutic effect of glucocorticoids. Neuroscience 2015;289:251-61. https://doi.org/10.1016/j.neuroscience.2014.12.062. 
  29. Xu XQ, Xu T, Ji W, Wang C, Ren Y, Xiong X, et al. Herpes simplex virus 1-induced ferroptosis contributes to viral encephalitis. mBio 2023;14:e0237022. https://doi.org/10.1128/mbio.02370-22. 
  30. Martin C, Aguila B, Araya P, Vio K, Valdivia S, Zambrano A, et al. Inflammatory and neurodegeneration markers during asymptomatic HSV-1 reactivation. J Alzheimers Dis 2014;39:849-59. https://doi.org/10.3233/JAD-131706. 
  31. Nakajima S, Kitamura M. Bidirectional regulation of NF-kappaB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med 2013;65:162-74. https://doi.org/10.1016/j.freeradbiomed.2013.06.020. 
  32. Song X, Cao W, Wang Z, Li F, Xiao J, Zeng Q, et al. Nicotinamide n-oxide attenuates HSV-1-Induced microglial inflammation through sirtuin-1/NF-kappaB signaling. Int J Mol Sci 2022;23. https://doi.org/10.3390/ijms232416085. 
  33. Matzinger M, Fischhuber K, Poloske D, Mechtler K, Heiss EH. AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes. Redox Biol 2020;29:101393. https://doi.org/10.1016/j.redox.2019.101393. 
  34. Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 2004;24:8477-86. https://doi.org/10.1128/MCB.24.19.8477-8486.2004. 
  35. Robledinos-Anton N, Fernandez-Gines R, Manda G, Cuadrado A. Activators and inhibitors of NRF2: a review of their potential for clinical development. Oxid Med Cell Longev 2019;2019:9372182. https://doi.org/10.1155/2019/9372182. 
  36. Cleasby A, Yon J, Day PJ, Richardson C, Tickle IJ, Williams PA, et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS One 2014;9:e98896. https://doi.org/10.1371/journal.pone.0098896. 
  37. Luo Y, Eggler AL, Liu D, Liu G, Mesecar AD, van Breemen RB. Sites of alkylation of human Keap1 by natural chemoprevention agents. J Am Soc Mass Spectrom 2007;18:2226-32. https://doi.org/10.1016/j.jasms.2007.09.015. 
  38. Duarte LF, Farias MA, Alvarez DM, Bueno SM, Riedel CA, Gonzalez PA. Herpes simplex virus type 1 infection of the central nervous system: insights into proposed interrelationships with neurodegenerative disorders. Front Cell Neurosci 2019;13:46. https://doi.org/10.3389/fncel.2019.00046. 
  39. Choi Y, Lee MK, Lim SY, Sung SH, Kim YC. Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. Br J Pharmacol 2009;156:933-40. https://doi.org/10.1111/j.1476-5381.2009.00022.x. 
  40. Gonzalez-Dosal R, Horan KA, Rahbek SH, Ichijo H, Chen ZJ, Mieyal JJ, et al. HSV infection induces production of ROS, which potentiate signaling from pattern recognition receptors: role for S-glutathionylation of TRAF3 and 6. PLoS Pathog 2011;7:e1002250. https://doi.org/10.1371/journal.ppat.1002250. 
  41. Lingappan K. NF-kappaB in oxidative stress. Curr Opin Toxicol 2018;7:81-6. https://doi.org/10.1016/j.cotox.2017.11.002. 
  42. Gu H, Roizman B. Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex. Proc Natl Acad Sci U S A 2007;104:17134-9. https://doi.org/10.1073/pnas.0707266104. 
  43. Gunderstofte C, Iversen MB, Peri S, Thielke A, Balachandran S, Holm CK, et al. Nrf2 negatively regulates type I interferon responses and increases susceptibility to herpes genital infection in mice. Front Immunol 2019;10:2101. https://doi.org/10.3389/fimmu.2019.02101. 
  44. Kwon EB, Li W, Kim YS, Kim B, Chung HS, Go Y, et al. Vitisin B inhibits influenza A virus replication by multi-targeting neuraminidase and virus-induced oxidative stress. Acta Pharm Sin B 2023;13:174-91. https://doi.org/10.1016/j.apsb.2022.07.001.