DOI QR코드

DOI QR Code

ANALYZING THE DURATION OF SUCCESS AND FAILURE IN MARKOV-MODULATED BERNOULLI PROCESSES

  • Yoora Kim (Department of Mathematics University of Ulsan)
  • 투고 : 2023.06.11
  • 심사 : 2024.02.16
  • 발행 : 2024.07.01

초록

A Markov-modulated Bernoulli process is a generalization of a Bernoulli process in which the success probability evolves over time according to a Markov chain. It has been widely applied in various disciplines for modeling and analysis of systems in random environments. This paper focuses on providing analytical characterizations of the Markovmodulated Bernoulli process by introducing key metrics, including success period, failure period, and cycle. We derive expressions for the distributions and the moments of these metrics in terms of the model parameters.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (No. NRF-2019R1F1A1060743).

참고문헌

  1. A. Alsaaidah, M. Zalisham, M. Fadzli, and H. Abdel-Jaber, Markov-modulated Bernoulli-based performance analysis for gentle BLUE and BLUE algorithms under bursty and correlated traffic, J. Comput. Sci. 12 (2016), no. 6, 289-299. https://doi.org/10.3844/jcssp.2016.289.299
  2. A. Arulmurugan and A. Amuthan, Markov modulated Bernoulli prediction process-based cluster head selection mechanism for improving resilience in wireless sensor networks, Int. J. Commun. Syst. 34 (2021), no. 8, e4771. https://doi.org/10.1002/dac.4771
  3. E. Cinlar, Introduction to Stochastic Processes, Courier Corporation, Prentice Hall, New Jersey, 1975.
  4. A. Duque, R. Stanica, H. Rivano, and A. Desportes, Analytical and simulation tools for optical camera communications, Comput. Commun. 160 (2020), 52-62. https://doi.org/10.1016/j.comcom.2020.05.036
  5. L. Guan, I. U. Awan, M. E. Woodward, and X. Wang, Discrete-time performance analysis of a congestion control mechanism based on RED under multi-class bursty and correlated traffic, J. Syst. Softw. 80 (2007), no. 10, 1716-1725. https://doi.org/10.1016/j.jss.2006.12.549
  6. L. Hogben, Handbook of Linear Algebra, CRC Press, Boca Raton, 2013.
  7. B. Hu and T. A. Tamba, Optimal codesign of industrial networked control systems with state-dependent correlated fading channels, Internat. J. Robust Nonlinear Control 29 (2019), no. 13, 4472-4493. https://doi.org/10.1002/rnc.4643
  8. B. Hu, Y. Wang, P. V. Orlik, T. Koike-Akino, and J. Guo, Co-design of safe and efficient networked control systems in factory automation with state-dependent wireless fading channels, Automatica J. IFAC 105 (2019), 334-346. https://doi.org/10.1016/j.automatica.2019.04.009
  9. G. Joseph and P. K. Varshney, State estimation of linear systems with sparse inputs and Markov-modulated missing outputs, Proceedings of 30th European Signal Processing Conference, Belgrade, Serbia, (2022), 837-841. https://doi.org/10.23919/EUSIPCO55093.2022.9909657
  10. B. Khamidehi, M. Raeis, and E. S. Sousa, Dynamic resource management for providing QoS in drone delivery systems, Proceedings of IEEE 25th International Conference on Intelligent Transportation Systems, Macau, China, (2022), 3529-3536. https://doi.org/10.1109/ITSC55140.2022.9922133
  11. Y. Kim, Starvation analysis of CDF-based scheduling over Nakagami-m Markov fading channels, IEEE Commun. Lett. 22 (2018), no. 2, 372-375. https://doi.org/10.1109/LCOMM.2017.2765308
  12. V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, CRC Press, Boca Raton, 2016.
  13. L. B. Lim, L. Guan, A. Grigg, I. W. Phillips, X. G. Wang, and I. U. Awan, RED and WRED performance analysis based on superposition of N MMBP arrival process, Proceedings of 24th IEEE International Conference on Advanced Information Networking and Applications, Perth, WA, Australia, (2010), 66-73. https://doi.org/10.1109/AINA.2010.85
  14. L. M. Maillart, C. R. Cassady, and J. Honeycutt, A binomial approximation of lot yield under Markov modulated Bernoulli item yield, IIE Trans. 40 (2008), no. 4, 459-467. https://doi.org/10.1080/07408170701592507
  15. S. Ozekici, Markov modulated Bernoulli process, Math. Methods Oper. Res. 45 (1997), no. 3, 311-324. https://doi.org/10.1007/BF01194782
  16. S. Ozekici and R. Soyer, Bayesian analysis of Markov modulated Bernoulli processes, Math. Methods Oper. Res. 57 (2003), no. 1, 125-140. https://doi.org/10.1007/s001860200268
  17. S. Ozekici and R. Soyer, Network reliability assessment in a random environment, Naval Res. Logist. 50 (2003), no. 6, 574-591. https://doi.org/10.1002/nav.10072
  18. S. Ozekici and R. Soyer, Reliability Modeling and Analysis in Random Environments, Mathematical Reliability: An Expository Perspective, Springer, Boston, MA, 2004. https://doi.org/10.1007/978-1-4419-9021-1_13
  19. N. Privault, Stochastic analysis of Bernoulli processes, Probab. Surv. 5 (2008), 435-483. https://doi.org/10.1214/08-PS139
  20. P. Sadeghi, R. A. Kennedy, P. B. Rapajic, and R. Shams, Finite-state Markov modeling of fading channels-a survey of principles and applications, IEEE Signal Process. Mag. 25 (2008), no. 5, 57-80. https://doi.org/10.1109/MSP.2008.926683
  21. H. SHI, R. V. Prasad, E. Onur, and I. G. M. M. Niemegeers, Fairness in wireless networks: issues, measures and challenges, IEEE Commun. Surv. Tutor. 16 (2014), no. 1, 5-24. https://doi.org/10.1109/SURV.2013.050113.00015
  22. Y. Sun, X. Chi, B. Yu, S. Zhao, S. Li, and Q. Meng, Hop-by-hop bandwidth allocation and deployment for SFC with end-to-end delay QoS guarantees, Comput. Commun. 192 (2022), 256-267. https://doi.org/10.1016/j.comcom.2022.06.002
  23. B. Tomlin, Impact of supply learning when suppliers are unreliable, Manuf. Serv. Oper. Manag. 11 (2009), no. 2, 192-209. https://doi.org/10.1287/msom.1070.0206
  24. Q. Xu, S. Li, T. V. Do, K. Jia, and N. Yang, Performance analysis of cognitive radio networks with burst dynamics, IEEE Access 9 (2021), 110627-110638. https://doi.org/10.1109/ACCESS.2021.3103321
  25. B. Yu, X. Chi, and H. Sun, Delay analysis for aggregate traffic based on martingales theory, IET Commun. 14 (2020), no. 5, 760-767. https://doi.org/10.1049/iet-com.2019.0282