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REALIZING A FAKE PROJECTIVE PLANE AS A DEGREE

25 SURFACE IN P5

Lev Borisov and Zachary Lihn

Abstract. Fake projective planes are smooth complex surfaces of gen-

eral type with Betti numbers equal to that of the usual projective plane.
Recent explicit constructions of fake projective planes embed them via

their bicanonical embedding in P9. In this paper, we study Keum’s fake
projective plane (a = 7, p = 2, {7}, D327) and use the equations of [1] to

construct an embedding of fake projective plane in P5. We also simplify

the 84 cubic equations defining the fake projective plane in P9.

1. Introduction

The Enriques-Kodaira classification splits compact complex surfaces S into
10 classes based largely on their Kodaira dimension k(S). While surfaces with
Kodaira dimension < 2 are better understood, those of general type with max-
imum Kodaira dimension k(S) = 2 still need a detailed classification.

To each minimal model of a surface S one associates a triple of numeri-
cal invariants (pg, q,K

2
S), where pg = h0(S,KS) is the geometric genus, q =

h1(S,OS) is the irregularity, and K2
S is the self-intersection number of the

canonical class KS . These determine all the other classical invariants such as
the topological Euler characteristic etop(S) = 12χ(OS)−K2

S and the plurigen-
era Pm(S) = h0(S,mKS) [7]. It turns out that producing surfaces with low pg
and q is quite difficult and a complete classification appears far away [2]. In the
case of pg = q = 0, one has the Bogomolov-Miyaoka-Yau inequality K2

S ≤ 9.
The focus of this paper is the extreme case of surfaces with pg = q = 0 and
K2

S = 9. These are the fake projective planes (often called FPPs for short)
which by definition are complex projective surfaces of general type with Hodge
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which is the same as that of CP2. The existence of a fake projective plane was
first proved by Mumford [13] by expressing the surface as a quotient of a 2-adic
analog of the complex two-dimensional ball

B2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1}

by a finitely generated group.
The general theory ensures that each fake projective plane is algebraic. By

Noether’s formula we know that c21 = 9 and so all FPPs have c21 = 3c2 = 9,
where c1, c2 are the Chern numbers. This implies that each FPP is a quotient
of B2 by an infinite discrete group [15]. These ball quotients are determined by
their fundamental group up to holomorphic or anti-holomorphic isomorphism
[12] and come in complex conjugate pairs [10]. All these groups are arithmetic
[9] and come in a finite list of classes [14].

Based on the work of Prasad and Yeung [14], a complete classification was
obtained by Cartwright and Steger [4]. All fake projective planes are quotients
of B2 by explicit co-compact torsion-free arithmetic subgroups of PU(2, 1). The
classification was accomplished with significant use of computer calculations.
There are 50 conjugate pairs of fake projective planes split among 28 classes.
Each FPP is a ball quotient B2/Γ where Γ is the fundamental group, and where
the automorphism group is N(Γ)/Γ with N(Γ) the normalizer of Γ in PU(2, 1).
The torsion of the Picard group of P2

fake is equal to the abelianization of Γ.

Various cover relations between related surfaces are also known [4].

1.1. The geometry of Keum’s fake projective plane

In this paper, we will focus on the fake projective plane

(a = 7, p = 2, {7}, D327)

in Cartwright-Steger classification. First constructed in [8], it is named Keum’s
fake projective plane and we will denote it by P2

Keum. Its automorphism group
has maximum order among all FPPs, being equal to the semi-direct product of
a normal cyclic subgroup C7 of order 7 and a non-normal cyclic subgroup C3

of order 3. By the Cartwright-Steger classification, there are three other fake
projective planes in its class, including Mumford’s first fake projective plane.

For the rest of this paper, we will let K denote the canonical class of Keum’s
fake projective plane. The minimal resolution Y of the quotient P2

Keum/C7 by
the subgroup C7 of its automorphism group has an interesting geometry which
we describe briefly.
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Recall that a singular point of type 1
m (1, a) is a cyclic quotient singularity

given local analytically by the action (x, y) 7→ (ζx, ζay) on C2 for ζ a primitive
mth root of unity. Y has three singular points of type 1

7 (1, 3) permuted by

the residual C3 automorphism group of P2
Keum. It is also a Dolgachev surface

fibered over P1, with generic fibers of genus 1, two multiple fibers, three nodal
fibers, and one fiber of type I9. The two multiple fibers are 2F3 and 3F2, which
have multiplicity 2 and 3 respectively. The reductions F3 and F2 are linearly
equivalent to 3KY and 2KY . We refer to [1, 8] for more details.

1.2. Explicit construction of P2
Keum

In [1], Keum’s fake projective plane was explicitly constructed via its bi-
canonical embedding as the vanishing set of 84 cubic equations in P9. One first
constructs a birational model Y0 of Y as a system of quadrics in 8 variables
defined over Q(

√
−7). Included is a construction of the double and triple fibers

and the C3 action on Y0. A degree 7 extension of the field of rational functions
of Y0 gives the sevenfold cover of Y0, which is exactly P2

Keum. Ten sections of
O(2K) are constructed from this description and the embedding in P9 is finally
given by 84 cubic equations in the 10 variables P0, . . . , P9.

A perennial question is how to simplify the equations of a fake projective
plane, which can have polynomials with coefficients hundreds to thousands of
decimal digits long. In this paper, we give a simplified version of the equa-
tions of Keum’s fake projective plane in [1]. We use the equations to find an
embedding of P2

Keum as a degree 25 surface in P5. The embedding is given by
sections of O(5H), where H is a divisor such that 3H is linearly equivalent to
K. Finally, we exhibit the equations of the surface as a system of 56 sextics in
P5 with coefficients in the field Q(

√
−7).

The paper is organized as follows. In Section 2 we outline the steps to
simplify the 84 cubics defining P2

Keum in P9. We follow the strategy described in
[1] by explicitly calculating the non-reduced linear cuts on P2

Keum corresponding
to 2-torsion in the Picard group. Using these equations, in Section 3 we describe
the steps to embed P2

Keum in P5. Specifically, we compute global sections of
O(5H) as global sections of the divisor 18H − 9H − 4H and explain the key
idea that allowed us to find H0(P2

fake,O(4H)). Section 4 concludes with future
directions.

Remark 1.1. A defining feature of recent constructions of fake projective planes
is their heavy use of computer algebra software. To that end, this project
depended heavily on the use of the Mathematica software system [11] and the
computer algebra systems Magma [3] and Macaulay2 [6].

Remark 1.2. The 84 cubics in P9 and the 56 sextics in P5 are still too large to
be included in the printed paper.
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2. Simplification of Keum’s fake projective plane

We will begin by simplifying the explicit equations of Keum’s fake projective
plane P2

Keum found in [1]. This is done by looking for non-reduced curves on
P2
Keum which correspond to 2-torsion in the Picard group. We proceed by

making a coordinate change that makes the curves nicer in our new basis.

Step 1: Finite field search for non-reduced curves

By the Cartwright-Steger classification, the torsion in the Picard group of
P2
Keum is C3

2 . In addition, the automorphism group is C7 ⋊C3, the semidirect
product of C7 and C3.

We claim that 2-torsion classes give non-reduced curves in |2K|. Let L be
a 2-torsion class in the Picard group. By [5], we have h0(P2

Keum,K + L) = 1.
Hence, up to scaling, there is a unique section sL ∈ H0(P2

Keum,K + L). The
square of sL is in H0(P2

Keum, 2K) and gives rise to a non-reduced curve.
We will further assume that the non-reduced curve is C3 invariant. This

reduces the search to non-reduced curves of the form

a0P0 + a1(P1 + P2 + P3) + a2(P4 + P5 + P6) + a3(P7 + P8 + P9)

up to scaling (so we subsequently set a0 = 1).
To look for such curves we look at a finite field reduction of P2

Keum over Fp

for suitable p. More precisely, such suitable p contains a square root of −7 and
has the same Hilbert polynomial for P2

Keum modulo p. We picked p = 43 with√
−7 ≡ 6 mod 43 which was an arbitrary small prime with the aforementioned

conditions. Using Magma, we ran an exhaustive search for all a1, a2, a3 in F43

and checked if the corresponding curve is non-reduced. We obtained the curve

P0 + 24(P1 + P2 + P3) + 0(P4 + P5 + P6) + 28(P7 + P8 + P9).

Step 2: Lift to characteristic 0

We lift this curve to Q(
√
−7) as follows. Using Magma, we calculate some

points in F43 lying on P2
Keum and the non-reduced curve. We then apply a

variant of Hensel lifting to lift the curve to Z/43kZ for higher k at each step,
obtaining a p-adic approximation.

The lifting process was done by finding, at each point, two linearly-independ-
ent tangent vectors in P9(F43) that are orthogonal to all polynomials defining
P2
Keum and the linear cut. We modified the points, tangent vectors, and the

linear cut at each stage to lift them to higher powers of 43 such that the or-
thogonality conditions held; this reduced to solving a system of linear equations
modulo 43. After a sufficiently high power of 43 we identify the corresponding
algebraic numbers by applying a lattice reduction algorithm. We obtain the
curve

P0 +
(−1 +

√
−7)

2
(P1 + P2 + P3) +

(272− 848
√
−7)

7
(P4 + P5 + P6)



FAKE PROJECTIVE PLANE IN P5 687

+
(832− 192

√
−7)

7
(P7 + P8 + P9)

which we verify is non-reduced numerically.
Thus we have found one nontrivial C3-invariant torsion line bundle. It is

not C7-invariant because the corresponding non-reduced linear cut is not C7

invariant. Its orbit therefore has 7 elements, which combined with knowledge of
the torsion of the Picard group as C3

2 shows that the action of the automorphism
group on the torsion in Picard group is transitive.

Step 3: Setting up the coordinate change

Finally we set up the coordinate change to find a nicer basis for

H0(P2
Keum, 2K)

in order to simplify the equations defining the fake projective plane. We use
a coordinate change from Pi to Qi that respects the automorphisms on the
surface such that the non-reduced cut becomes

Q0 +Q1 +Q2 +Q3 +Q7 +Q8 +Q9.

These conditions leave one free parameter in the coordinate change. We fix
the free parameter by choosing it in such a way to set the “simplest” coefficient
in the equations to 1. This allows us to find a version of the 84 equations with
significantly smaller coefficients.

We simplify the equations further by reducing the number of monomials in
the equations. We take random linear combinations of the seven equations
in each C7 weight and select those that span the space and have the fewest
monomials.

3. Embedding of a fake projective plane into P5

In this section, we will describe the process that led us to find the equations
of an embedding of P2

Keum in P5. Let H be a divisor such that 3H = K, where
K = KP2

Keum
is the canonical divisor of P2

Keum. Calculations of h0(P2
Keum, nH)

show that |5H| has the expected dimension such that the corresponding map
to projective space is P5. Thus we aim to construct |5H| explicitly, which will
give the desired map P2

Keum → P5.

Table 1. Dimensions of H0(P2
Keum, nH) for different values

of n, where 3H = K.

n 3 4 5 6 7 8 9 10 11 12

h0
(
P2
Keum, nH

)
0 3 6 10 15 21 28 36 45 55

Recall that Y denotes the quotient P2
Keum/C7 of Keum’s fake projective

plane by its C7 automorphism subgroup. It has residual automorphism group
C3 and has a double fiber F = 3KY .
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We will construct |5H| as the space |18H − 9H − 4H|. We first find |9H| =
|18H−9H| by expressing 112 cubic equations in theQi (which lie in 18H = 6K)
that vanish on 9H. Crucial to this construction is the preimage of the double
fiber F of Y which we use to find points on 9H. We then compute |4H|. This
required the use of several important ideas which are detailed in Step 2 below.
Finally, after constructing 4H we may find 5H as linear combinations of the
equations of 9H vanishing on 4H. We conclude by using the explicit equations
in P5 to reconstruct the C3 action on P2

Keum in its embedding into P5.

Step 1: Constructing |9H|

The preimage of the double fiber on Y has divisor class 3K = 9H [1].
Hence to construct |9H| we are led to find polynomials on Y vanishing on the
double fiber. Recall that [1] constructs the surface Y as a system of quadrics
in the variables u0, u1, w1, . . . , w6 with the double fiber given by {u1 = 0}.
We compute a number of random points on the double fiber of Y and use the
equations to construct points on P2

Keum lying on the preimage of the double
fiber. We then look for polynomials vanishing on these points to compute
H0(P2

Keum, 9H). The search for cubic polynomials gave 112 cubics with 16 in
each C7 weight.

Step 2: Constructing |4H|

We may attempt to construct |4H| as follows. The action of the C7 auto-
morphism subgroup on H0(P2

Keum, 4H) gives a C7-representation which splits
H0(P2

Keum, 4H) into three one-dimensional C7-eigenspaces. The Holomorphic
Lefschetz Fixed-Point formula shows that the eigenvalues are ξ3, ξ5, ξ6, where
ξ is a seventh root of unity. Thus H0(P2

Keum, 4H) ∼= Cr3 ⊕ Cr5 ⊕ Cr6 where
r3, r5, r6 are sections of 4H with C7-weights 3, 5, and 6 respectively. In addi-
tion, the C3-action on the surface implies r5 = σ(r3), r6 = σ2(r3) for σ an order
3 automorphism on P2

Keum. The product d = r3r5r6 is therefore a C3-invariant
section with C7-weight 0 in H0(P2

Keum, 12H) (it is then invariant under the
whole automorphism group).

Set si = r3i ∈ H0(P2
Keum, 12H) for i ∈ {3, 5, 6}. The equation

s3s5s6 = d3

in H0(P2
Keum, 36H) allows us to narrow down parameters in the search for

r3, r5, r6. Since s3, s5, s6, and d lie in H0(P2
Keum, 12H), they are quadratic

in the variables Q0, . . . , Q9 for the fake projective plane. It is sufficient to
construct s3 since s5 and s6 may be constructed from s3 with the C3 action.
Additionally, since s3 has C7 weight 3 × 3 ≡ 2 mod 7, we narrow the search
down to C7-weight 2 quadratics.

We may further reduce the number of parameters with additional data. The
curve {r3 = 0} passes through the two C7 fixed points

p1 = (0: 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0),
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p2 = (0: 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0).

It follows that at these points the curve {s3 = 0} vanishes with multiplicity 3,
which place additional conditions on the coefficients of s3.

Now we begin describing the details of the calculation. We first calculate the
order 3 neighborhoods of the points p1 and p2. This was done by computing the
tangent space and solving for the conditions of the neighborhoods vanishing on
the FPP. We began by solving for the order 2 neighborhood and then for the
third order. To speed up calculations, it was sufficient to take some equations
for P2

Keum locally cutting out the point. After computing these neighborhoods,
we posit the general form for s3 as weight 2 quadratics in the variables and then
solve for the conditions of being identically 0 at the higher order neighborhoods.
We are able to solve for two of these variables, narrowing down the general form
for s3 to 6 variables.

We now want to solve for the sextic equation s3s5s6 − d3 = 0. The require-
ment that d be invariant under the full automorphism group forces it to be of
the form

e1Q
2
0 + e2(Q1Q6 +Q2Q4 +Q3Q5) + e3(Q1Q9 +Q2Q7 +Q3Q8)

for undetermined coefficients e1, e2, e3. We also obtain the general forms for s5
and s6 by applying the C3 automorphism to s3. To solve for the coefficients,
we compute some points of P2

Keum with high accuracy and substitute them
into s3s5s6 − d3 = 0 to obtain a system of 24 cubics in 6 variables. We solve
this system of equations by applying the trick of [2]. The Hilbert polynomial
of the system of equations modulo 37 with

√
−7 ≡ 17 mod 37 is 3, which

suggests that there are 3 solutions for this system. By applying successive linear
conditions on the system and checking the Hilbert polynomial at each step, we
are able to take linear cuts that drop the Hilbert polynomial eventually to 1.
At some point there are 3 different choices for the linear cuts corresponding to
our 3 solutions. We were able to lift these 3 solutions modulo 37200 and then
use the lattice reduction algorithm to obtain the corresponding solutions over
Q(

√
−7). The three solutions differed by a cube root of unity. We selected the

solution defined over the desired field of definition to proceed.
The solution for these coefficients allows us to fully determine s3, s5, s6, and

d. The equations for s3 and d are given below, with s5 and s6 found by applying
the C3 automorphism. Points on {r3 = 0} may then be calculated by solving
for the simultaneous conditions {s3 = 0, d = 0}. These points were used later
in the construction.

s3 =

(
−212275 + 26525i

√
7
)
Q0Q5

2470336
+

(
22575 + 51275i

√
7
)
Q0Q8

1235168

+

(
139475 + 17575i

√
7
)
Q1Q2

9881344
+

(
196875− 91425i

√
7
)
Q3Q4

2470336

+

(
−303625− 270725i

√
7
)
Q3Q7

4940672
+

(
139475 + 17575i

√
7
)
Q2

6

1235168
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+

(
795725− 287175i

√
7
)
Q6Q9

4940672
+

(
−57575− 549675i

√
7
)
Q2

9

9881344

d =
25

9881344

(
3407

√
−7Q2

0 + 17045Q2
0 − 2812

√
−7Q1Q6 − 22316Q1Q6

+ 329
√
−7Q1Q9 − 21987Q1Q9 − 2812

√
−7Q2Q4 − 22316Q2Q4

+ 329
√
−7Q2Q7 − 21987Q2Q7 − 2812

√
−7Q3Q5 − 22316Q3Q5

+ 329
√
−7Q3Q8 − 21987Q3Q8

)
Step 3: The map P2

Keum → P5

With the computations of 9H and 4H we may now find 5H. We look at
suitable linear combinations of the 112 polynomials vanishing on 18H − 9H =
9H additionally vanishing on 4H to obtain 18H − 9H − 4H = 5H.

We first compute some random points on 4H by solving for {d = 0, s3 = 0}
on the FPP. 5H is then found by looking for linear combinations of the cubics
defining 9H for each weight that vanish on these points. To verify that they
are in |5H| we also check that they do not vanish on the whole fake projective
plane.

The six resulting degree 3 polynomials give us the map P2
Keum → P5. We

calculate points in the image of this map in P5 and find 56 degree 6 polynomials
in new variables Z1, . . . , Z6 that vanish at these points. These give the desired
embedding of the fake projective plane.

Remark 3.1. The C7-weights on the variables Z1, Z2, . . . , Z6 are 1, 2, . . . , 6.
There is no weight 0 variable. The construction required that we shift the
C7 weights by 3. This may be explained by viewing our construction of
H0(P2

Keum, 5H) as given by an embedding

H0(P2
Keum, 5H) ↪→ H0(P2

Keum, 18H)

with the map given by tensoring with s3 ⊗ f for s3 ∈ H0(P2
Keum, 4H) and

f ∈ H0(P2
Keum, 9H). While f has weight 0, s3 has weight 3 and therefore

shifts the weights of H0(P2
Keum, 5H) by 3.

We take care to reconstruct the automorphism group. While the C7-action
is preserved under our construction, the non-C3-invariance of s3 introduces a
scaling factor in the C3 action. We fix the coefficients of this scaling factor and
recompute the equations with the scaling to find a better basis for the action.
As before, we take random linear combinations of the equations that span the
space and take the simplest ones to further simplify the equations.

Finally, we use Magma to verify that the Hilbert polynomial is as expected.
The verification process for the FPP is carried out as in [1] working modulo
p = 1327 with

√
−7 = 103 mod 1327. Thus we have constructed Keum’s fake

projective plane as a degree 25 surface in P5.
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4. Future directions

One hopes to find a coordinate change to additionally simplify the 56 equa-
tions in P5.

A related construction of interest is that of Mumford’s original fake projec-
tive plane [13]. This surface has not been explicitly constructed yet. It lies in
the same class as P2

Keum and two other fake projective planes. We are currently
attempting to find this surface by computing a seven-to-one cover of P2

Keum,
after which several cover relations may yield the surface and the two fake pro-
jective planes in the same class.
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while the second author was supported by NSF grant CCF-1852215.
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