참고문헌
- Alzabeebee, S. and Al-Taie, A. (2022), "Development of new models to predict the compressibility parameters of alluvial soils", Geomech. Eng., 30(5), 437-448. https://doi.org/10.12989/gae.2022.30.5.437.
- Badie, A. and Wang, M.C. (1984), "Stability of spread footing above void in clay", J. Geotech. Eng., 110, 1591-1605. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:11(1591).
- Bong, T., Kim, S.R. and Kim, B.I. (2020), "Prediction of ultimate bearing capacity of aggregate pier reinforced clay using multiple regression analysis and deep learning", Appl. Sci., 10(13), 4580. https://doi.org/10.3390/app10134580.
- Broere, W. (2016), "Urban underground space: Solving the problems of today's cities", Tunn. Undergr. Sp. Tech., 55, 245-248. https://doi.org/10.1016/j.tust.2015.11.012.
- Chowdhury, R., Bhattacharya, G. and Metya, S. (2023), Geotechnical Slope Analysis, 2nd Ed., CRC Press, Balkema.
- Dadhich, S., Sharma, J.K. and Madhira, M. (2021), "Prediction of ultimate bearing capacity of aggregate pier reinforced clay using machine learning", Int. J. Geosynth. Ground Eng., 7, 1-16. https://doi.org/10.1007/s40891-021-00282-x.
- Debbarma, S. and Ransinchung, G.D. (2022), "Using artificial neural networks to predict the 28-day compressive strength of roller-compacted concrete pavements containing RAP aggregates", Road Mater. Pavement Des., 23, 149-167. https://doi.org/10.1080/14680629.2020.1822202.
- Faherty, R., Acikgoz, S., Wong, E.K.L., Hewitt, P. and Viggiani, G.M.B. (2022), "Tunnel-soil-structure interaction mechanisms in a metallic arch bridge", Tunn. Undergr. Sp. Tech., 123, 104429. https://doi.org/10.1016/j.tust.2022.104429.
- Fan, S., Song, Z., Xu, T., Wang, K. and Zhang, Y. (2021), "Tunnel deformation and stress response under the bilateral foundation pit construction: A case study", Arch. Civil Mech. Eng., 21. https://doi.org/10.1007/s43452-021-00259-7.
- Fathima Sana, V.K., Nazeeh, K.M., Dilip, D.M. and Sivakumar Babu, G.L. (2022), "Reliability-based design optimization of shallow foundation on cohesionless soil based on surrogate-based numerical Mmodeling", Int. J. Geomech., 22, 1-8. https://doi.org/10.1061/(asce)gm.1943-5622.0002274.
- Goel, R.K. (2015), Use of underground space for the development of cities in India, Water and Energy International 58RNI:41-45.
- Habibagahi, K. (1984), "Bearing capacity of strip footing above void", J. Geotech. Eng., 110, 137. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:1(137).
- Jabbar, S.F., Hamed, R.I. and Alwan, A.H. (2018), "The potential of nonparametric model in foundation bearing capacity prediction", Neural Comput. Appl., 30, 3235-3241. https://doi.org/10.1007/s00521-017-2916-9.
- Kardani, N., Zhou, A., Nazem, M. and Shen, S.L. (2020), "Estimation of bearing capacity of piles in cohesionless soil using optimised machine learning approaches", Geotech. Geol. Eng., 38, 2271-2291. https://doi.org/10.1007/s10706-019-01085-8.
- Keawsawasvong, S. (2021), "Limit analysis solutions for spherical cavities in sandy soils under overloading", Innov. Infrastruct. Solutions, 6, 1-8. https://doi.org/10.1007/s41062-020-00398-5.
- Kioumarsi, M., Dabiri, H., Kandiri, A. and Farhangi, V. (2023), "Compressive strength of concrete containing furnace blast slag; optimized machine learning-based models", Clean Eng. Technol., 13, 100604. https://doi.org/10.1016/j.clet.2023.100604.
- Kohestani, V.R., Vosoughi, M., Hassanlourad, M. and Fallahnia, M. (2017), "Bearing capacity of shallow foundations on cohesionless soils: A random forest based approach", Civil Eng. Infrastruct. J., 50, 35-49. https://doi.org/10.7508/ceij.2017.01.003.
- Kumar, D.R., Wipulanusat, W., Kumar, M., Keawsawasvong, S. and Samui, P. (2024), "Optimized neural network-based state-of-the-art soft computing models for the bearing capacity of strip footings subjected to inclined loading", Intell. Syst. Appl., 21, 200314. https://doi.org/10.1016/j.iswa.2023.200314.
- Kumar, P., Metya, S., Shubham, K. and Prashad, D. (2022), "Behaviour of strip footing over cavity subjected to inclined and eccentric loads", Arabian J. Geosci., 15. https://doi.org/10.1007/s12517-022-10739-6.
- Kumar, P. and Samui, P. (2024), "Reliability-based load and resistance factor design of an energy pile with CPT data using machine learning techniques", Arab. J. Sci. Eng., 49, 4831-4860. https://doi.org/10.1007/s13369-023-08253-2.
- Li, M.G., Xiao, X., Wang, J.H. and Chen, J.J. (2019), "Numerical study on responses of an existing metro line to staged deep excavations", Tunn. Undergr. Sp. Tech., 85, 268-281. https://doi.org/10.1016/j.tust.2018.12.005.
- Lo, K.Y. and Ramsay, J.A. (1991), "The effect of construction on existing subway tunnels-a case study from Toronto", Tunnelling and Underground Space Technology incorporating Trenchless 6, 287-297. https://doi.org/10.1016/0886-7798(91)90140-Y.
- Malhotra, M., Sahu, V., Srivastava, A. and Misra, A.K. (2020), "Experimental and numerical investigation of the effect of pre-existing utility tunnel on the bearing capacity of shallow footing in sandy soils", J. Eng. Design Tech., 18, 513-529. https://doi.org/10.1108/JEDT-04-2019-0102.
- Maria, A. and Naggar, E. (2015), Effects of tunnelling on the bearing capacity of shallow foundations. In: GeoQuebec 2015.
- Metya, S., Mukhopadhyay, T., Adhikari, S. and Bhattacharya, G. (2017), "System reliability analysis of soil slopes with general slip surfaces using multivariate adaptive regression splines", Comput. Geotech., 87, 212-228. https://doi.org/10.1016/j.compgeo.2017.02.017.
- Miliziano, S. and de Lillis, A. (2019), "Predicted and observed settlements induced by the mechanized tunnel excavation of metro line C near S. Giovanni station in Rome", Tunn. Undergr. Sp. Tech., 86, 236-246. https://doi.org/10.1016/j.tust.2019.01.022.
- Mirzaeiabdolyousefi, M., Mahmoodzadeh, A., Ibrahim, H.H., Rashidi, S., Kamal Majeed, M. and Mohammed, A.H. (2022), "Prediction of squeezing phenomenon in tunneling projects: Application of Gaussian process regression", Geomech. Eng., 30(1), 11-26. https://doi.org/10.12989/gae.2022.30.1.011.
- Moayedi, H. and Jahed Armaghani, D. (2018), "Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil", Eng. Comput., 34, 347-356. https://doi.org/10.1007/s00366-017-0545-7.
- Nazeeh, K.M., Dilip, D.M. and Sivakumar Babu, G.L. (2023), "Quantile-based design and optimization of shallow foundation on cohesionless soil using adaptive Kriging surrogates", Int. J. Geomech., 23. https://doi.org/10.1061/ijgnai.gmeng-8226.
- Pribyl, O., Pribyl, P. and Svitek, M. (2021), Interdisciplinary urban tunnel control within smart cities, Applied Sciences (Switzerland), 11. https://doi.org/10.3390/app112210950.
- Rabbani, A., Muslih, J.A., Saxena, M., Patil, S.K., Mulay, B.N., Tiwari, M., Usha, A., Kumari, S. and Samui, P. (2024), "Utilization of tree-based ensemble models for predicting the shear strength of soil", Transport. Infrastruct. Geotech., https://doi.org/10.1007/s40515-024-00379-6.
- Rajabi, A.M., Saadati, M., Mahmoudi, M. and Fijani, E. (2022), "Effect of the circular cavity on the undrained bearing capacity of shallow strip footing", Arabian J. Geosci., 15, 1-10. https://doi.org/10.1007/s12517-022-10503-w.
- Sabouni, R. and Airan Eng, M. (2018), "Evaluation of foundation on soil with cavities: A case study from the UAE", Int. J. Struct. Civil Eng. Res., 358-363. https://doi.org/10.18178/ijscer.7.4.358-363.
- Shahin, H.M., Nakai, T., Ishii, K., Iwata, T. and Kuroi, S. (2016), "Investigation of influence of tunneling on existing building and tunnel: Model tests and numerical simulations", Acta Geotech., 11, 679-692. https://doi.org/10.1007/s11440-015-0428-2.
- Shubham, K., Metya, S. and Bhattacharya, G. (2022), "Reliability analysis of settlement of a foundation resting over a circular void", (Eds., Satyanarayana Reddy, C.N.V., Krishna, A.M. and Satyam, N.), Dynamics of Soil and Modelling of Geotechnical Problems. Lecture Notes in Civil Engineering, 186th edn. Springer, Singapore.
- Shubham, K., Metya, S. and Sinha, A.K. (2023a), "Surrogate model-based prediction of settlement in foundation over cavity for reliability analysis", Transport. Infrastruct. Geotech.,. https://doi.org/10.1007/s40515-023-00329-8.
- Shubham, K., Rout, M.K.D. and Sinha, A.K. (2023b), "Efficient compressive strength prediction of concrete incorporating industrial wastes using deep neural network", Asian J. Civil Eng., https://doi.org/10.1007/s42107-023-00726-x.
- Sohaei, H., Namazi, E., Hajihassani, M. and Marto, A. (2020), "A review on tunnel-pile interaction applied by physical modeling", Geotech. Geol. Eng., 38, 3341-3362. https://doi.org/10.1007/s10706-020-01240-6.
- Srivastava, A., Kothari, S. and Jawaid, S. (2024), "Numerical simulation-based performance assessment of pile group placed over buried utility tunnel", Iranian J. Sci. Tech. T. Civil Eng., https://doi.org/10.1007/s40996-023-01321-5.
- Wang, M.C. and Hsieh, C.W. (1987), Collapse Load of Strip Footing Above Circular Void., 113, 511-515. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:5(511)
- Wu, G., Zhao, M., Zhao, H. and Xiao, Y. (2020), "Effect of eccentric load on the undrained bearing capacity of strip footings above voids", Int. J. Geomech., 20, 04020078. https://doi.org/10.1061/(asce)gm.1943-5622.0001710.
- Xue, Y., Li, X., Li, G., Qiu, D., Gong, H. and Kong, F. (2020), "An analytical model for assessing soft rock tunnel collapse risk and its engineering application", Geomech. Eng., 23(5), 441-454. https://doi.org/10.12989/gae.2020.23.5.441.
- Yu, Z.T., Wang, H.Y., Wang, W., Ling, D.S., Zhang, X.D., Wang, C. and Qu, Y.H. ( 2021), "Experimental and numerical investigation on the effects of foundation pit excavation on adjacent tunnels in soft soil", Math. Probl. Eng., https://doi.org/10.1155/2021/5587857.
- Zhang, W., Gu, X., Tang, L., Yin, Y., Liu, D. and Zhang, Y. (2022), "Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge", Gondwana Res., 109, 1-17. https://doi.org/10.1016/j.gr.2022.03.015.