DOI QR코드

DOI QR Code

Effect of the gravity on a nonlocal thermoelastic medium with a heat source using fractional derivative

  • Samia M. Said (Department of Mathematics, Faculty of Science, Zagazig University)
  • Received : 2023.11.28
  • Accepted : 2024.06.03
  • Published : 2024.06.25

Abstract

The purpose of this paper is to depict the effect of gravity on a nonlocal thermoelastic medium with initial stress. The Lord-Shulman and Green-Lindsay theories with fractional derivative order serve as the foundation for the formulation of the fundamental equations for the problem. To address the problem and acquire the exact expressions of physical fields, appropriate non-dimensional variables and normal mode analysis are used. MATLAB software is used for numerical calculations. The projected outcomes in the presence and absence of the gravitational field, along with a nonlocal parameter, are compared. Additional comparisons are made for various fractional derivative order values. It is evident that the variation of physical variables is significantly influenced by the fractional derivative order, nonlocal parameter and gravity field.

Keywords

References

  1. Abbas, I.A. and Zenkour, A.M. (2013), "LS model on electro-magneto-thermo-elastic response of an infinite functionally graded cylinder", Compos. Struct., 96, 89-96. https://doi.org/10.1016/j.compstruct.2012.08.046.
  2. Abbas, I., Alzahrani, F. and Berto, F. (2018), "The effect of fractional derivative on photo-thermoelastic interaction in an infinite semiconducting medium with a cylindrical hole", Eng. Sol. Mech., 6(3), 275-284. https://doi.org/10.5267/j.esm.2018.4.001.
  3. Abel, N.H. (1881), "Solution De Quelques Problems a L'aide D'integrals Definites", Oeuvres Completes 1, Grondahl Christiania, Norway, 16-18.
  4. Abouelregal, A.E. (2020), "Modified fractional photothermoelastic model for a rotating semiconductor half-space subjected to a magnetic field", Silicon, 12(12), 2837-2850. https://doi.org/10.1007/s12633-020-00380-x.
  5. Abouelregal, A.E., Mohammed, W.W. and Mohammad-Sedighi, H. (2021), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Arch. Appl. Mech., 91, 2127-2142. https://doi.org/10.1007/s00419-020-01873-2.
  6. Abouelregal, A.E. and Sedighi, H.M. (2021), "A new insight into the interaction of thermoelasticity with mass diffusion for a half-space in the context of Moore-Gibson-Thompson thermodiffusion theory," Appl. Phys. A, 127, 582. https://doi.org/10.1007/s00339-021-04725-0.
  7. Abouelregal, A.E., Askar, S.S., Marin, M. and Mohammed, M. (2023), "The theory of thermoelasticity with a memory-dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod", Sci. Rep., 13, 9052. https://doi.org/10.1038/s41598-023-36371-2.
  8. Abouelregal, A.E., Marin, M. and Askar, S.S. (2023), "Analysis of the magneto-thermoelastic vibrations of rotating Euler-Bernoulli nanobeams using the nonlocal elasticity model", Bound Value Probl., 21. https://doi.org/10.1186/s13661-023-01706-5.
  9. Atta, D. (2022), "Thermal diffusion responses in an infinite medium with a spherical cavity using the Atangana-Baleanu fractional operator", J. Appl. Comput. Mech., 8(4), 1358-1369. https://doi.org/10.22055/jacm.2022.40318.3556.
  10. Bahraini, S.M.S., Eghtesad, M., Farid, M. and Ghavanloo, E. (2021), "Analysis of an electrically actuated fractional model of viscoelastic microbeams", Struct. Eng. Mech., 52(5), 937-956. https://doi.org/10.12989/sem.2014.52.5.937.
  11. Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27, 240-253. https://doi.org/10.1063/1.1722351.
  12. Caputo, M. and Mainardi, F. (1971a), "A new dissipation model based on memory mechanism", Pure Appl. Geophys., 91(12), 134-147. https://doi.org/10.1007/BF00879562.
  13. Caputo, M. and Mainardi, F. (1971b), "Linear models of dissipation in anelastic solids", Rivista del Nuovo Cimento (Ser. II), 1(4), 161-198. https://doi.org/10.1007/BF02820620.
  14. Caputo, M.(1974), "Vibrations on an infinite viscoelastic layer with a dissipative memory", J. Acoust. Soc. Am., 56(3), 897-904. https://doi.org/10.1121/1.1903344.
  15. Deswal, S. and Kalkal, K.K. (2013), "Fractional order heat conduction law in micropolar thermo-viscoelasticity with two temperatures", Int. J. Heat Mass Transfer, 66, 451-460. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.047.
  16. Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  17. Eringen, A.C. and Edelen, D.G.B. (1972b), "On nonlocal elastic", Int. J. Eng. Sci., 10 (3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  18. Eringen, A. C. (2002), "Nonlocal continuum field theories", New York (NY): Springer.
  19. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(3), 1-7. https://doi.org/10.1007/BF00045689.
  20. Hetnarski, R.B. and Eslami, M.R. (2009), "Thermal Stress-Advanced Theory and Applications", (Springer Science Business Media, B.V., New York.
  21. Kaliski, S., Rymarz, C.Z. and Sobczyk, K. (1992), "Surface waves in nonlocal media and in media with a microstructure", (Eds., Kaliski, S. and Solarz, L.) Studies in Applied Mechanics - B: Waves, 30 (Warsaw: PWN- Polish Scientific Publications), 261-270. https://doi.org/10.1016/B978-0-444-98690-0.50031-6.
  22. Kaur, I., Lata, P. and Singh, K. (2021), "Reflection of plane harmonic wave in rotating media with fractional order heat transfer and two temperature", Partial Diff. Eq. Appl. Math., 4, 100049. https://doi.org/10.1016/j.padiff.2021.100049.
  23. Khalil, E.M., Abo-Dahab, S.M. and Kilany, A.A. (2021), "Electromagnetic field and initial stress on a photothermal semiconducting voids medium under thermoelasticity theories", Math. Meth. Appl. Sci., 44(9), 7778-7798. https://doi.org/10.1002/mma.6942.
  24. Khan, U., Ellahi, R., Khan, R. and Mohyud-Din, S.T. (2017), "Extracting new solitary wave solutions of Benny-Luke equation and Phi-4 equation of fractional order by using (G'/G)-expansion method", Opt. Quant. Electron., 49, 362. https://doi.org/10.1007/s11082-017-1191-4.
  25. Khurana, A. and Tomar, S.K. (2017), "Rayleigh-type waves in nonlocal micropolar solid half-space", Ultrasonics, 75, 162-168. https://doi.org/10.1016/j.ultras.2016.09.005.
  26. Lata, P. (2020), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., 74(3), 341-350. https://doi.org/10.12989/sem.2020.74.3.341.
  27. Lord, H.W. and Shulman, Y.A. (1967), "Generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  28. Luo, P., Li, X. and Tian, X. (2021), "Nonlocal thermoelasticity and its application in thermoelastic problem with temperature-dependent thermal conductivity", Eur. J. Mech. - A/Solids, 87, 104204. https://doi.org/10.1016/j.euromechsol.2020.104204.
  29. Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863.
  30. Marin, M., Hobiny, A. and Abbas, I. (2021), "The effects of fractional time derivatives in porothermoelastic materials using finite element method", Mathematics, 9(14), 1606. https://doi.org/10.3390/math9141606.
  31. Miller, K.S. and Ross, B. (1993), "An introduction to the fractional integrals and derivatives", Theory and applications. John Wiley and Sons Inc: New York.
  32. Lamba, N.K. (2023), "Impact of memory-dependent response of a thermoelastic thick solid cylinder", J. Appl. Comput. Mech., 9(4), 1135-1143. https://doi.org/10.22055/jacm.2023.43952.4149.
  33. Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
  34. Podlubny, I. (1999), "Fractional differential equations", Math. Sci. Eng., Academic Press, San Diego, Calif, USA.
  35. Said, S.M. and Othman, M.I.A. (2016), "Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model", Struct. Eng. Mech., 57( 2), 201-220. https://doi.org/10.12989/sem.2016.57.2.201.
  36. Said, S.M. (2020), "The effect of mechanical strip load on a magneto-micropolar thermoelastic medium: Comparison of four different theories", Mech. Res. Commun., 107, 103549. https://doi.org/10.1016/j.mechrescom.2020.103549.
  37. Said, S.M. (2022), "Fractional derivative heat transfer for rotating modified couple stress magneto-thermoelastic medium with two temperatures", Waves Rand. Comp. Media, 32(3), 1517-1534. https://doi.org/10.1080/17455030.2020.1828663.
  38. Said, S.M. (2023), "A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach", Geomechan. Eng., 32(2), 137-144. https://doi.org/10.12989/gae.2023.32.2.137.
  39. Ullah, R., Ellahi, R., Mohyud-Din, S.T. and Khan, U. (2018), "Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method", Res. Phys., 8 114-120. https://doi.org/10.1016/j.rinp.2017.11.023.
  40. Youssef , H.M. (2016), "Theory of generalized thermoelasticity with fractional order strain", J. Vib. Control, 22(18), 3840-3857. https://doi.org/10.1177/1077546314566837.
  41. Youssef, H.M. and Al-Lehaibi, E.A.N. (2019), "The boundary value problem of a three-dimensional generalized thermoelastic half-space subjected to moving rectangular heat source", Bound. Value Probl., 8. https://doi.org/10.1186/s13661-019-1119-y.
  42. Yu, Y.J., Tian, X.G. and Liu, X.R. (2015), "Size-dependent generalized thermoelasticity using Eringen's nonlocal model", Eur. J. Mech. - A/Solids, 51, 96-106. https://doi.org/10.1016/j.euromechsol.2014.12.005.
  43. Zenkour, A.M. and Abouelregal, A.E. (2014), "Effect of harmonically varying heat on FG nanobeams in the context of a nonlocal two-temperature thermoelasticity theory", Eur. J. Comput. Mech., 23(1-2), 1-14. https://doi.org/10.1080/17797179.2014.882141.
  44. Zenkour, A.M., Saeed T. and Al-Raezah, A.A. (2023), "A 1D thermoelastic response of skin tissue due to ramp-type heating via a fractional-order Lord-Shulman model", J. Comput. Appl. Mech., 54(3), 365-377. https://doi.org/10.22059/JCAMECH.2023.364796.871.