References
- Abbas, I.A. and Zenkour, A.M. (2013), "LS model on electro-magneto-thermo-elastic response of an infinite functionally graded cylinder", Compos. Struct., 96, 89-96. https://doi.org/10.1016/j.compstruct.2012.08.046.
- Abbas, I., Alzahrani, F. and Berto, F. (2018), "The effect of fractional derivative on photo-thermoelastic interaction in an infinite semiconducting medium with a cylindrical hole", Eng. Sol. Mech., 6(3), 275-284. https://doi.org/10.5267/j.esm.2018.4.001.
- Abel, N.H. (1881), "Solution De Quelques Problems a L'aide D'integrals Definites", Oeuvres Completes 1, Grondahl Christiania, Norway, 16-18.
- Abouelregal, A.E. (2020), "Modified fractional photothermoelastic model for a rotating semiconductor half-space subjected to a magnetic field", Silicon, 12(12), 2837-2850. https://doi.org/10.1007/s12633-020-00380-x.
- Abouelregal, A.E., Mohammed, W.W. and Mohammad-Sedighi, H. (2021), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Arch. Appl. Mech., 91, 2127-2142. https://doi.org/10.1007/s00419-020-01873-2.
- Abouelregal, A.E. and Sedighi, H.M. (2021), "A new insight into the interaction of thermoelasticity with mass diffusion for a half-space in the context of Moore-Gibson-Thompson thermodiffusion theory," Appl. Phys. A, 127, 582. https://doi.org/10.1007/s00339-021-04725-0.
- Abouelregal, A.E., Askar, S.S., Marin, M. and Mohammed, M. (2023), "The theory of thermoelasticity with a memory-dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod", Sci. Rep., 13, 9052. https://doi.org/10.1038/s41598-023-36371-2.
- Abouelregal, A.E., Marin, M. and Askar, S.S. (2023), "Analysis of the magneto-thermoelastic vibrations of rotating Euler-Bernoulli nanobeams using the nonlocal elasticity model", Bound Value Probl., 21. https://doi.org/10.1186/s13661-023-01706-5.
- Atta, D. (2022), "Thermal diffusion responses in an infinite medium with a spherical cavity using the Atangana-Baleanu fractional operator", J. Appl. Comput. Mech., 8(4), 1358-1369. https://doi.org/10.22055/jacm.2022.40318.3556.
- Bahraini, S.M.S., Eghtesad, M., Farid, M. and Ghavanloo, E. (2021), "Analysis of an electrically actuated fractional model of viscoelastic microbeams", Struct. Eng. Mech., 52(5), 937-956. https://doi.org/10.12989/sem.2014.52.5.937.
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27, 240-253. https://doi.org/10.1063/1.1722351.
- Caputo, M. and Mainardi, F. (1971a), "A new dissipation model based on memory mechanism", Pure Appl. Geophys., 91(12), 134-147. https://doi.org/10.1007/BF00879562.
- Caputo, M. and Mainardi, F. (1971b), "Linear models of dissipation in anelastic solids", Rivista del Nuovo Cimento (Ser. II), 1(4), 161-198. https://doi.org/10.1007/BF02820620.
- Caputo, M.(1974), "Vibrations on an infinite viscoelastic layer with a dissipative memory", J. Acoust. Soc. Am., 56(3), 897-904. https://doi.org/10.1121/1.1903344.
- Deswal, S. and Kalkal, K.K. (2013), "Fractional order heat conduction law in micropolar thermo-viscoelasticity with two temperatures", Int. J. Heat Mass Transfer, 66, 451-460. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.047.
- Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. and Edelen, D.G.B. (1972b), "On nonlocal elastic", Int. J. Eng. Sci., 10 (3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Eringen, A. C. (2002), "Nonlocal continuum field theories", New York (NY): Springer.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(3), 1-7. https://doi.org/10.1007/BF00045689.
- Hetnarski, R.B. and Eslami, M.R. (2009), "Thermal Stress-Advanced Theory and Applications", (Springer Science Business Media, B.V., New York.
- Kaliski, S., Rymarz, C.Z. and Sobczyk, K. (1992), "Surface waves in nonlocal media and in media with a microstructure", (Eds., Kaliski, S. and Solarz, L.) Studies in Applied Mechanics - B: Waves, 30 (Warsaw: PWN- Polish Scientific Publications), 261-270. https://doi.org/10.1016/B978-0-444-98690-0.50031-6.
- Kaur, I., Lata, P. and Singh, K. (2021), "Reflection of plane harmonic wave in rotating media with fractional order heat transfer and two temperature", Partial Diff. Eq. Appl. Math., 4, 100049. https://doi.org/10.1016/j.padiff.2021.100049.
- Khalil, E.M., Abo-Dahab, S.M. and Kilany, A.A. (2021), "Electromagnetic field and initial stress on a photothermal semiconducting voids medium under thermoelasticity theories", Math. Meth. Appl. Sci., 44(9), 7778-7798. https://doi.org/10.1002/mma.6942.
- Khan, U., Ellahi, R., Khan, R. and Mohyud-Din, S.T. (2017), "Extracting new solitary wave solutions of Benny-Luke equation and Phi-4 equation of fractional order by using (G'/G)-expansion method", Opt. Quant. Electron., 49, 362. https://doi.org/10.1007/s11082-017-1191-4.
- Khurana, A. and Tomar, S.K. (2017), "Rayleigh-type waves in nonlocal micropolar solid half-space", Ultrasonics, 75, 162-168. https://doi.org/10.1016/j.ultras.2016.09.005.
- Lata, P. (2020), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., 74(3), 341-350. https://doi.org/10.12989/sem.2020.74.3.341.
- Lord, H.W. and Shulman, Y.A. (1967), "Generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Luo, P., Li, X. and Tian, X. (2021), "Nonlocal thermoelasticity and its application in thermoelastic problem with temperature-dependent thermal conductivity", Eur. J. Mech. - A/Solids, 87, 104204. https://doi.org/10.1016/j.euromechsol.2020.104204.
- Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863.
- Marin, M., Hobiny, A. and Abbas, I. (2021), "The effects of fractional time derivatives in porothermoelastic materials using finite element method", Mathematics, 9(14), 1606. https://doi.org/10.3390/math9141606.
- Miller, K.S. and Ross, B. (1993), "An introduction to the fractional integrals and derivatives", Theory and applications. John Wiley and Sons Inc: New York.
- Lamba, N.K. (2023), "Impact of memory-dependent response of a thermoelastic thick solid cylinder", J. Appl. Comput. Mech., 9(4), 1135-1143. https://doi.org/10.22055/jacm.2023.43952.4149.
- Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Podlubny, I. (1999), "Fractional differential equations", Math. Sci. Eng., Academic Press, San Diego, Calif, USA.
- Said, S.M. and Othman, M.I.A. (2016), "Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model", Struct. Eng. Mech., 57( 2), 201-220. https://doi.org/10.12989/sem.2016.57.2.201.
- Said, S.M. (2020), "The effect of mechanical strip load on a magneto-micropolar thermoelastic medium: Comparison of four different theories", Mech. Res. Commun., 107, 103549. https://doi.org/10.1016/j.mechrescom.2020.103549.
- Said, S.M. (2022), "Fractional derivative heat transfer for rotating modified couple stress magneto-thermoelastic medium with two temperatures", Waves Rand. Comp. Media, 32(3), 1517-1534. https://doi.org/10.1080/17455030.2020.1828663.
- Said, S.M. (2023), "A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach", Geomechan. Eng., 32(2), 137-144. https://doi.org/10.12989/gae.2023.32.2.137.
- Ullah, R., Ellahi, R., Mohyud-Din, S.T. and Khan, U. (2018), "Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method", Res. Phys., 8 114-120. https://doi.org/10.1016/j.rinp.2017.11.023.
- Youssef , H.M. (2016), "Theory of generalized thermoelasticity with fractional order strain", J. Vib. Control, 22(18), 3840-3857. https://doi.org/10.1177/1077546314566837.
- Youssef, H.M. and Al-Lehaibi, E.A.N. (2019), "The boundary value problem of a three-dimensional generalized thermoelastic half-space subjected to moving rectangular heat source", Bound. Value Probl., 8. https://doi.org/10.1186/s13661-019-1119-y.
- Yu, Y.J., Tian, X.G. and Liu, X.R. (2015), "Size-dependent generalized thermoelasticity using Eringen's nonlocal model", Eur. J. Mech. - A/Solids, 51, 96-106. https://doi.org/10.1016/j.euromechsol.2014.12.005.
- Zenkour, A.M. and Abouelregal, A.E. (2014), "Effect of harmonically varying heat on FG nanobeams in the context of a nonlocal two-temperature thermoelasticity theory", Eur. J. Comput. Mech., 23(1-2), 1-14. https://doi.org/10.1080/17797179.2014.882141.
- Zenkour, A.M., Saeed T. and Al-Raezah, A.A. (2023), "A 1D thermoelastic response of skin tissue due to ramp-type heating via a fractional-order Lord-Shulman model", J. Comput. Appl. Mech., 54(3), 365-377. https://doi.org/10.22059/JCAMECH.2023.364796.871.