Acknowledgement
The authors thank Yumei Li, Yonghong Zhang, and Yuwei Yang for critical reading of the manuscript.
References
- El-Salhy M, Patcharatrakul T, Gonlachanvit S. Fecal microbiota transplantation for irritable bowel syndrome: an intervention for the 21(st) century. World J Gastroenterol 2021;27:2921-43. https://doi.org/10.3748/wjg.v27.i22.2921
- Wang X, Wu X, Cong X, et al. The functional role of fecal microbiota transplantation on Salmonella Enteritidis infection in chicks. Vet Microbiol 2022;269:109449. https://doi.org/10.1016/j.vetmic.2022.109449
- Fesseha H, Demlie T, Mathewos M, Eshetu E. Effect of Lactobacillus species probiotics on growth performance of dual-purpose chicken. Vet Med (Auckl) 2021;12:75-83. https://doi.org/10.2147/vmrr.S300881
- Hong Y, Zhou Z, Yu L, et al. Lactobacillus salivarius and Lactobacillus agilis feeding regulates intestinal stem cells activity by modulating crypt niche in hens. Appl Microbiol Biotechnol 2021;105:8823-35. https://doi.org/10.1007/s00253-021-11606-2
- Kokoszynski D, Steczny K, Zochowska-Kujawska J, et al. Carcass characteristics, physicochemical properties, and texture and microstructure of the meat and internal organs of carrier and king pigeons. Animals (Basel) 2020;10:1315. https://doi.org/10.3390/ani10081315
- Xu Q, Wang X, Liu Y, Dong X, Zou X. Parental dietary arachidonic acid altered serum fatty acid profile, hepatic antioxidant capacity, and lipid metabolism in domestic pigeons (Columba livia). Anim Sci J 2021;92:e13616. https://doi.org/10.1111/asj.13616
- Pomianowski JF, Mikulski D, Pudyszak K, et al. Chemical composition, cholesterol content, and fatty acid profile of pigeon meat as influenced by meat-type breeds. Poult Sci 2009;88:1306-9. https://doi.org/10.3382/ps.2008-00217
- Liu T, Wang L, Jiang X, Liu Y, Diao E, Xie P. Free-choice feeding of whole grains improves meat quality and intestinal development of pigeon squabs compared with complete pelleted feed. Life (Basel) 2023;13:848. https://doi.org/10.3390/life13030848
- Ji F, Zhang D, Shao Y, et al. Changes in the diversity and composition of gut microbiota in pigeon squabs infected with Trichomonas gallinae. Sci Rep 2020;10:19978. https://doi.org/10.1038/s41598-020-76821-9
- Wang X, Yan P, Feng S, et al. Identification and expression pattern analysis of miRNAs in pectoral muscle during pigeon (Columba livia) development. PeerJ 2021;9:e11438. https://doi.org/10.7717/peerj.11438
- Ding J, Liao N, Zheng Y, et al. The composition and function of pigeon milk microbiota transmitted from parent pigeons to squabs. Front Microbiol 2020;11:1789. https://doi.org/10.3389/fmicb.2020.01789
- Jin CL, He YA, Jiang SG, et al. Chemical composition of pigeon crop milk and factors affecting its production: a review. Poult Sci 2023;102:102681. https://doi.org/10.1016/j.psj.2023.102681
- Ye M, Xu M, Chen C, et al. Expression analyses of candidate genes related to meat quality traits in squabs from two breeds of meat-type pigeon. J Anim Physiol Anim Nutr (Berl) 2018;102:727-35. https://doi.org/10.1111/jpn.12869
- Chang L, Tang Q, Zhang R, et al. Evaluation of meat quality of local pigeon varieties in china. Animals (Basel) 2023;13:1291. https://doi.org/10.3390/ani13081291
- Tsai CY, Hu SY, Santos HM, Catulin GEM, Tayo LL, Chuang KP. Probiotic supplementation containing Bacillus velezensis enhances expression of immune regulatory genes against pigeon circovirus in pigeons (Columba livia). J Appl Microbiol 2021;130:1695-704. https://doi.org/10.1111/jam.14893
- Ge B, Yang H, Meng J, Chen X, Wang Z. Effects of mannan oligosaccharides and/or bifidobacterium on growth and immunity in domestic pigeon (Columba livia domestica). J Poult Sci 2020;57:277-83. https://doi.org/10.2141/jpsa.0190100
- Zhao W, Liu Q, Jiang H, et al. Monitoring the variations in physicochemical characteristics of squab meat during the braising cooking process. Food Sci Nutr 2022;10:2727-35. https://doi.org/10.1002/fsn3.2876
- Nichols RG, Davenport ER. The relationship between the gut microbiome and host gene expression: a review. Hum Genet 2021;140:747-60. https://doi.org/10.1007/s00439-020-02237-0
- Qi R, Zhang Z, Wang J, et al. Introduction of colonic and fecal microbiota from an adult pig differently affects the growth, gut health, intestinal microbiota and blood metabolome of newborn piglets. Front Microbiol 2021;12:623673. https://doi.org/10.3389/fmicb.2021.623673
- Ramirez GA, Keshri J, Vahrson I, et al. Cecal microbial hydrogen cycling potential is linked to feed efficiency phenotypes in chickens. Front Vet Sci 2022;9:904698. https://doi.org/10.3389/fvets.2022.904698
- Bokoliya SC, Dorsett Y, Panier H, Zhou Y. Procedures for fecal microbiota transplantation in murine microbiome studies. Front Cell Infect Microbiol 2021;11:711055. https://doi.org/10.3389/fcimb.2021.711055
- Sarrabayrouse G, Landolfi S, Pozuelo M, et al. Mucosal microbial load in Crohn's disease: a potential predictor of response to faecal microbiota transplantation. EBioMedicine 2020;51:102611. https://doi.org/10.1016/j.ebiom.2019.102611
- Xu Q, Zhao W, Li Y, Zou X, Dong X. Intestinal immune development is accompanied by temporal deviation in microbiota composition of newly hatched pigeon squabs. Microbiol Spectr 2022;10:e0189221. https://doi.org/10.1128/spectrum.01892-21
- Elokil AA, Chen W, Mahrose K, et al. Early life microbiota transplantation from highly feed-efficient broiler improved weight gain by reshaping the gut microbiota in laying chicken. Front Microbiol 2022;13:1022783. https://doi.org/10.3389/fmicb.2022.1022783
- O'Callaghan J, O'Toole PW. Lactobacillus: host-microbe relationships. Curr Top Microbiol Immunol 2013;358:119-54. https://doi.org/10.1007/82_2011_187
- Hao H, Zhang X, Tong L, et al. Effect of extracellular vesicles derived From Lactobacillus plantarum Q7 on gut microbiota and ulcerative colitis in mice. Front Immunol 2021;12:777147. https://doi.org/10.3389/fimmu.2021.777147
- Ma S, Zhang F, Zhou F, et al. Metagenomic analysis reveals oropharyngeal microbiota alterations in patients with COVID-19. Signal Transduct Target Ther 2021;6:191. https://doi.org/10.1038/s41392-021-00614-3
- Habib K, Drouillard J, de Aguiar Veloso V, Huynh G, Huynh V, Gragg SE. The use of probiotic megasphaera elsdenii as a pre-harvest intervention to reduce salmonella in finishing beef cattle: an in vitro model. Microorganisms 2022;10:1400. https://doi.org/10.3390/microorganisms10071400
- Zhang X, Chen S, Zhang M, et al. Effects of fermented milk containing lacticaseibacillus paracasei strain shirota on constipation in patients with depression: a randomized, double-blind, placebo-controlled trial. Nutrients 2021;13:2238. https://doi.org/10.3390/nu13072238
- Smith BJ, Miller RA, Ericsson AC, Harrison D, Strong R, Schmidt TM. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol 2019;19:130. https://doi.org/10.1186/s12866-019-1494-7
- Huang R, Wu F, Zhou Q, et al. Lactobacillus and intestinal diseases: mechanisms of action and clinical applications. Microbiol Res 2022;260:127019. https://doi.org/10.1016/j.micres.2022.127019
- Zhuge A, Li S, Lou P, et al. Longitudinal 16S rRNA sequencing reveals relationships among alterations of gut microbiota and nonalcoholic fatty liver disease progression in mice. Microbiol Spectr 2022;10:e0004722. https://doi.org/10.1128/spectrum.00047-22
- Si J, Lee G, You HJ, et al. Gut microbiome signatures distinguish type 2 diabetes mellitus from non-alcoholic fatty liver disease. Comput Struct Biotechnol J 2021;19:5920-30. https://doi.org/10.1016/j.csbj.2021.10.032
- Chung Y, Ryu Y, An BC, et al. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. Microbiome 2021;9:122. https://doi.org/10.1186/s40168-021-01071-4
- Dong L, Du H, Zhang M, et al. Anti-inflammatory effect of Rhein on ulcerative colitis via inhibiting PI3K/Akt/mTOR signaling pathway and regulating gut microbiota. Phytother Res 2022;36:2081-94. https://doi.org/10.1002/ptr.7429
- Ghosh TS, Rampelli S, Jeffery IB, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 2020;69:1218-28. https://doi.org/10.1136/gutjnl-2019-319654
- Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord 2019;20:461-72. https://doi.org/10.1007/s11154-019-09512-0
- Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 2022;30:289-300. https://doi.org/10.1016/j.chom.2022.02.004
- Bansal M, Fu Y, Alrubaye B, et al. A secondary bile acid from microbiota metabolism attenuates ileitis and bile acid reduction in subclinical necrotic enteritis in chickens. J Anim Sci Biotechnol 2020;11:37. https://doi.org/10.1186/s40104-020-00441-6
- Collins SL, Patterson AD. The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm Sin B 2020;10:19-32. https://doi.org/10.1016/j.apsb.2019.12.001