DOI QR코드

DOI QR Code

Pregnancy influences expression of interferon-stimulated genes, progesterone receptor and progesterone-induced blocking factor in ovine thyroid

  • Jianhua Cao (School of Life Sciences and Food Engineering, Hebei University of Engineering) ;
  • Shuxin Zhao (School of Life Sciences and Food Engineering, Hebei University of Engineering) ;
  • Yaqi Zhang (School of Life Sciences and Food Engineering, Hebei University of Engineering) ;
  • Jiabao Cai (School of Life Sciences and Food Engineering, Hebei University of Engineering) ;
  • Leying Zhang (School of Life Sciences and Food Engineering, Hebei University of Engineering) ;
  • Ling Yang (School of Life Sciences and Food Engineering, Hebei University of Engineering)
  • Received : 2023.12.01
  • Accepted : 2024.02.18
  • Published : 2024.08.01

Abstract

Objective: Embryonic interferon-tau (IFNT) and progesterone affect expression of interferon-stimulated genes (ISGs), progesterone receptor (PGR) and progesterone-induced blocking factor (PIBF) in the ovine thyroid. Methods: Thyroids of ewes were sampled at day 16 of nonpregnancy, days 13, 16, and 25 of pregnancy, and real-time quantitative polymerase chain reaction assay, western blot and immunohistochemistry were used to detect expression of ISGs, PGR, and PIBF. Results: Free ISG15 protein was undetected, but ISG15 conjugated proteins upregulated at day 16 of pregnancy, and expression levels of ISG15 conjugated proteins, PGR isoform (70 kDa), PIBF, interferon-gamma-inducible protein 10 and myxovirusresistance protein 1 peaked, but expression level of signal transducer and activator of transcription 1 was the lowest at day 16 of pregnancy. In addition, the expression levels of PGR isoform (70 kDa) and signal transducer and activator of transcription 1 (STAT1) decreased, but levels of PGR isoform (43 kDa), 2',5'-oligoadenylate synthetase, IP-10 and MX1 increased at day 25 of pregnancy comparing with day 16 of the estrous cycle. Conclusion: Early pregnancy affects expression of ISGs, PGR, and PIBF in maternal thyroid through IFNT and progesterone, which may regulate thyroid autoimmunity and thyroid hormone secretion in ewes.

Keywords

Acknowledgement

This work was supported by the grants from Natural Science Foundation of Hebei Province, China (C2021402019), and Hebei Science and Technology Agency, China (22326602D).

References

  1. Wiltbank MC, Monteiro PLJ, Domingues RR, Andrade JPN, Mezera MA. Review: maintenance of the ruminant corpus luteum during pregnancy: interferon-tau and beyond. Animal (Basel) 2023;17(Suppl 1):100827. https://doi.org/10.1016/j.animal.2023 
  2. Bazer FW, Seo H, Wu G, Johnson GA. Interferon tau: influences on growth and development of the conceptus. Theriogenology 2020;150:75-83. https://doi.org/10.1016/j.theriogenology.2020.01.069 
  3. Ott TL. Immunological detection of pregnancy: evidence for systemic immune modulation during early pregnancy in ruminants. Theriogenology 2020;150:498-503. https://doi.org/10.1016/j.theriogenology.2020.04.010 
  4. Yang L, Li N, Zhang L, Bai J, Zhao Z, Wang Y. Effects of early pregnancy on expression of interferon-stimulated gene 15, STAT1, OAS1, MX1, and IP-10 in ovine liver. Anim Sci J 2020;91:e13378. https://doi.org/10.1111/asj.13378 
  5. Alak I, Hitit M, Kose M, et al. Relative abundance and localization of interferon-stimulated gene 15 mRNA transcript in intra- and extra-uterine tissues during the early stages of pregnancy in sheep. Anim Reprod Sci 2020;216:106347. https://doi.org/10.1016/j.anireprosci.2020.106347 
  6. Villarroya-Beltri C, Guerra S, Sanchez-Madrid F. ISGylation - a key to lock the cell gates for preventing the spread of threats. J Cell Sci 2017;130:2961-9. https://doi.org/10.1242/jcs.205468 
  7. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 2014;94:355-82. https://doi.org/10.1152/physrev.00030.2013 
  8. Swiatkowska-Stodulska R, Berlinska A, Stefanska K, et al. Endocrine autoimmunity in pregnancy. Front Immunol 2022;13:907561. https://doi.org/10.3389/fimmu.2022.907561 
  9. Maruo T. Progesterone, thyroid hormone and relaxin in the regulation of the invasive potential of extravillous trophoblasts in early placental development. Gynecol Endocrinol 2010;26:629-30. https://doi.org/10.3109/09513590.2010.492966 
  10. Ashkar FA, Semple E, Schmidt CH, St John E, Bartlewski PM, King WA. Thyroid hormone supplementation improves bovine embryo development in vitro. Hum Reprod 2010;25:334-44. https://doi.org/10.1093/humrep/dep394 
  11. Springer D, Jiskra J, Limanova Z, Zima T, Potlukova E. Thyroid in pregnancy: from physiology to screening. Crit Rev Clin Lab Sci 2017;54:102-16. https://doi.org/10.1080/10408363.2016.1269309 
  12. Bertoni AP, Brum IS, Hillebrand AC, Furlanetto TW. Progesterone upregulates gene expression in normal human thyroid follicular cells. Int J Endocrinol 2015;2015:864852. https://doi.org/10.1155/2015/864852 
  13. Grimm SL, Hartig SM, Edwards DP. Progesterone receptor signaling mechanisms. J Mol Biol 2016;428:3831-49. https://doi.org/10.1016/j.jmb.2016.06.020 
  14. Chen D, Qi W, Zhang P, Guan H, Wang L. Expression of the estrogen receptor α, progesterone receptor and epidermal growth factor receptor in papillary thyroid carcinoma tissues. Oncol Lett 2015;10:317-20. https://doi.org/10.3892/ol.2015.3223 
  15. Szekeres-Bartho J, Schindler AE. Progestogens and immunology. Best Pract Res Clin Obstet Gynaecol 2019;60:17-23. https://doi.org/10.1016/j.bpobgyn.2019.07.001 
  16. Zhang L, Zhuang C, Zhao Z, Li N, Bai J, Yang L. Effect of early pregnancy on the expression of progesterone receptor and progesterone-induced blocking factor 1 in ovine liver. Czech J Anim Sci 2019;64:317-23. https://doi.org/10.17221/21/2019-CJAS 
  17. Wardlaw CP, Petrini JHJ. ISG15 conjugation to proteins on nascent DNA mitigates DNA replication stress. Nat Commun 2022;13:5971. https://doi.org/10.1038/s41467-022-33535-y 
  18. Kang JA, Kim YJ, Jeon YJ. The diverse repertoire of ISG15: more intricate than initially thought. Exp Mol Med 2022;54:1779-92. https://doi.org/10.1038/s12276-022-00872-3 
  19. Casano AB, Barile VL, Menchetti L, et al. Interferon tau (IFNt) and interferon-stimulated genes (ISGs) expression in peripheral blood leukocytes and correlation with circulating pregnancy-associated glycoproteins (PAGs) during peri-implantation and early pregnancy in buffalo cows. Animals (Basel) 2022;12:3068. https://doi.org/10.3390/ani12223068 
  20. Haq IU, Han Y, Ali T, et al. Expression of interferon-stimulated gene ISG15 and ubiquitination enzymes is upregulated in peripheral blood monocyte during early pregnancy in dairy cattle. Reprod Biol 2016;16:255-60. https://doi.org/10.1016/j.repbio.2016.10.001 
  21. Han X, Wang S, Ren Y, Lin T, Zhang L, Yang L. Selection of early pregnancy specific proteins and development a rapid immunochromatographic test strip in cows. Theriogenology 2022;187:127-34. https://doi.org/10.1016/j.theriogenology.2022.04.029 
  22. Cote GJ, Grubbs EG, Hofmann MC. Thyroid c-Cell biology and oncogenic transformation. Recent Results Cancer Res 2015;204:1-39. https://doi.org/10.1007/978-3-319-22542-5_1 
  23. Butturini E, Carcereri de Prati A, Mariotto S. Redox regulation of STAT1 and STAT3 signaling. Int J Mol Sci 2020;21:7034. https://doi.org/10.3390/ijms21197034 
  24. Zhang L, Zhao Z, Wang Y, Li N, Cao N, Yang L. Changes in expression of interferon-stimulated genes and ubiquitin activating enzyme E1-like in ovine thymus during early pregnancy. Anim Reprod 2020;17:e20190134. https://doi.org/10.1590/1984-3143-AR2019-0134 
  25. Liu H, Wang C, Li Z, et al.Transcriptomic analysis of STAT1/3 in the goat endometrium during embryo implantation. Front Vet Sci 2021;8:757759. https://doi.org/10.3389/fvets.2021.757759 
  26. Leisching G, Cole V, Ali AT, Baker B. OAS1, OAS2 and OAS3 restrict intracellular M. tb replication and enhance cytokine secretion. Int J Infect Dis 2019;80S:S77-84. https://doi.org/10.1016/j.ijid.2019.02.029 
  27. Yoshino H, Kizaki K, Hirata TI, et al. Interferon-stimulated gene expression in peripheral blood leucocytes as a convenient prediction marker for embryo status in embryo-transferred Japanese Black cows during the peri-implantation period. Vet Sci 2023;10:408. https://doi.org/10.3390/vetsci10070408 
  28. Mohammed S, Alhussien MN, Dang AK. Pregnancy stage-dependent modulation of neutrophil function may impact embryo survivability and pregnancy outcome in crossbred cows. Theriogenology 2022;191:200-6. https://doi.org/10.1016/j.theriogenology.2022.08.020 
  29. Wang Y, Han X, Zhang L, Cao N, Cao L, Yang L. Early pregnancy induces expression of STAT1, OAS1 and CXCL10 in ovine spleen. Animals 2019;9:882. https://doi.org/10.3390/ani9110882 
  30. Zhang L, Cao L, Yang F, et al. Relative abundance of interferon-stimulated genes STAT1, OAS1, CXCL10 and MX1 in ovine lymph nodes during early pregnancy. Anim Reprod Sci 2020;214:106285. https://doi.org/10.1016/j.anireprosci.2020.106285 
  31. Guldner IH, Wang Q, Yang L, et al. CNS-native myeloid cells drive immune suppression in the brain metastatic niche through Cxcl10. Cell 2020;183:1234-48 e25. https://doi.org/10.1016/j.cell.2020.09.064 
  32. Tripathy S, Nallasamy S, Mahendroo M. Progesterone and its receptor signaling in cervical remodeling: mechanisms of physiological actions and therapeutic implications. J Steroid Biochem Mol Biol 2022;223:106137. https://doi.org/10.1016/j.jsbmb.2022.106137 
  33. Wu SP, Li R, DeMayo FJ. Progesterone receptor regulation of uterine adaptation for pregnancy. Trends Endocrinol Metab 2018;29:481-91. https://doi.org/10.1016/j.tem.2018.04.001 
  34. Pu H, Wen X, Luo DX, Guo Z. Regulation of progesterone receptor expression in endometriosis, endometrial cancer, and breast cancer by estrogen, polymorphisms, transcription factors, epigenetic alterations, and ubiquitin-proteasome system. J Steroid Biochem Mol Biol 2023;227:106199. https://doi.org/10.1016/j.jsbmb.2022.106199 
  35. Check JH. The role of progesterone and the progesterone receptor in cancer. Expert Rev Endocrinol Metab 2017;12:187-97. https://doi.org/10.1080/17446651.2017.1314783 
  36. Sahin ME, Madendag IC, Sahin E, Madendag Y, Karakukcu C. The role of serum progesterone induced blocking factor on unexplained infertility. Eur J Obstet Gynecol Reprod Biol 2020;252:15-8. https://doi.org/10.1016/j.ejogrb.2020.05.069 
  37. Lim MK, Ku CW, Tan TC, Lee YHJ, Allen JC, Tan NS. Characterisation of serum progesterone and progesterone-induced blocking factor (PIBF) levels across trimesters in healthy pregnant women. Sci Rep 2020;10:3840. https://doi.org/10.1038/s41598-020-59452-y 
  38. Szekeres-Bartho J, Sucurovic S, Mulac-Jericevic B. The role of extracellular vesicles and PIBF in embryo-maternal immune-interactions. Front Immunol 2018;9:2890. https://doi.org/10.3389/fimmu.2018.02890 
  39. Piccinni MP, Raghupathy R, Saito S, Szekeres-Bartho J. Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction. Front Immunol 2021;12:717808. https://doi.org/10.3389/fimmu.2021.717808 
  40. Burch HB. Drug effects on the thyroid. N Engl J Med 2019;381:749-61. https://doi.org/10.1056/NEJMra1901214