DOI QR코드

DOI QR Code

The spatio-temporal expression analysis of parathyroid hormone like hormone gene provides a new insight for bone growth of the antler tip tissue in sika deer

  • Haihua Xing (College of Wildlife and Protected Area, Northeast Forestry University) ;
  • Ruobing Han (College of Wildlife and Protected Area, Northeast Forestry University) ;
  • Qianghui Wang (College of Wildlife and Protected Area, Northeast Forestry University) ;
  • Zihui Sun (College of Wildlife and Protected Area, Northeast Forestry University) ;
  • Heping Li (College of Wildlife and Protected Area, Northeast Forestry University)
  • Received : 2023.10.17
  • Accepted : 2024.01.08
  • Published : 2024.08.01

Abstract

Objective: Parathyroid hormone like hormone (PTHLH), as an essential factor for bone growth, is involved in a variety of physiological processes. The aim of this study was to explore the role of PTHLH gene in the growth of antlers. Methods: The coding sequence (CDS) of PTHLH gene cDNA was obtained by cloning in sika deer (Cervus nippon), and the bioinformatics was analyzed. The quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the differences expression of PTHLH mRNA in different tissues of the antler tip at different growth periods (early period, EP; middle period, MP; late period, LP). Results: The CDS of PTHLH gene was 534 bp in length and encoded 177 amino acids. Predictive analysis results revealed that the PTHLH protein was a hydrophilic protein without transmembrane structure, with its secondary structure consisting mainly of random coil. The PTHLH protein of sika deer had the identity of 98.31%, 96.82%, 96.05%, and 94.92% with Cervus canadensis, Bos mutus, Oryx dammah and Budorcas taxicolor, which were highly conserved among the artiodactyls. The qRT-PCR results showed that PTHLH mRNA had a unique spatio-temporal expression pattern in antlers. In the dermis, precartilage, and cartilage tissues, the expression of PTHLH mRNA was extremely significantly higher in MP than in EP, LP (p<0.01). In the mesenchyme tissue, the expression of PTHLH mRNA in MP was significantly higher than that of EP (p<0.05), but extremely significantly lower than that of LP (p<0.01). The expression of PTHLH mRNA in antler tip tissues at all growth periods had approximately the same trend, that is, from distal to basal, it was first downregulated from the dermis to the mesenchyme and then continuously up-regulated to the cartilage tissue. Conclusion: PTHLH gene may promote the rapid growth of antler mainly through its extensive regulatory effect on the antler tip tissue.

Keywords

Acknowledgement

The study was funded by the National Key R&D Program of China (2023YFD1302001).

References

  1. Price JS, Allen S, Faucheux C, Althnaian T, Mount JG. Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals? J Anat 2005;207:603-18. https://doi.org/10.1111/j.1469-7580.2005.00478.x
  2. Li CY, Yang FH, Sheppard A. Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of deer antlers. Curr Stem Cell Res Ther 2009;4:237-51. https://doi.org/10.2174/157488809789057446
  3. Price J, Faucheux C, Allen S. Deer antlers as a model of mammalian regeneration. Curr Top Dev Biol 2005;67:1-48. https://doi.org/10.1016/S0070-2153(05)67001-9
  4. Li CY, Clark DE, Lord EA, Stanton JAL, Suttie JM. Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec 2002;268:125-30. https://doi.org/10.1002/ar.10120
  5. Yao BJ, Zhang M, Liu MX, Liu YX, Hu YZ, Zhao Y. Transcriptomic characterization elucidates a signaling network that controls antler growth. Genome 2018;61:829-41. https://doi.org/10.1139/gen-2017-0241
  6. Li CY, Zhao HP, Liu Z, McMahon C. Deer antler--a novel model for studying organ regeneration in mammals. Int J Biochem Cell Biol 2014;56:111-22. https://doi.org/10.1016/j.biocel.2014.07.007
  7. Xing HH, Zhang FR, Han RB, Li HP. DNA methylation pattern and mRNA expression of OPN promoter in sika deer antler tip tissues. Gene 2023;868:147382. https://doi.org/10.1016/j.gene.2023.147382
  8. Suva LJ, Winslow GA, Wettenhall REH, et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science 1987;237:893-6. https://doi.org/10.1126/science.3616618
  9. Merendino Jr JJ, Insogna KL, Milstone LM, Broadus AE, Stewart AF. A parathyroid hormone-like protein from cultured human keratinocytes. Science 1986;231:388-90. https://doi.org/10.1126/science.2417317
  10. Guo XL, Wang YY, Chen QY, et al. The role of PTHLH in ovarian follicle selection, its transcriptional regulation and genetic effects on egg laying traits in hens. Front Genet 2019;10:430. https://doi.org/10.3389/fgene.2019.00430
  11. Lee K, Deeds JD, Segre GV. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal development of rats. Endocrinology 1995;136:453-63. https://doi.org/10.1210/endo.136.2.7835276
  12. Wang Y, Yang SX, Tu P, Zhang B, Ma SQ. Expression of parathyroid hormone (PTH)/PTH-related peptide receptor messenger ribonucleic acid in mice hair cycle. J Dermatol Sci 2002;30:136-41. https://doi.org/10.1016/s0923-1811(02)00074-9
  13. Dou PC, He Y, Yu B, Duan J. Downregulation of microRNA- 29b by DNMT3B decelerates chondrocyte apoptosis and the progression of osteoarthritis via PTHLH/CDK4/RUNX2 axis. Aging (Albany NY) 2020;13:7676-90. https://doi.org/10.18632/aging.103778
  14. Kim YJ, Kim HJ, Im GI. PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Biochem Biophys Res Commun 2008;373:104-8. https://doi.org/10.1016/j.bbrc.2008.05.183
  15. Rajagopal K, Ramesh S, Madhuri V. Early addition of parathyroid hormone-related peptide regulates the hypertrophic differentiation of mesenchymal stem cells. Cartilage 2021;13(Suppl 2):143S-152S. https://doi.org/10.1177/1947603519894727
  16. Karaplis AC, Luz A, Glowacki J, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 1994;8:277-89. https://doi.org/10.1101/gad.8.3.277
  17. Barling PM, Liu H, Matich J, et al. Expression of PTHrP and the PTH/PTHrP receptor in growing red deer antler. Cell Biol Int 2004;28:661-73. https://doi.org/10.1016/j.cellbi.2004.05.005
  18. Ba HX, Wang DT, Yau TO, Shang YD, Li CY. Transcriptomic analysis of different tissue layers in antler growth center in sika deer (Cervus nippon). BMC Genomics 2019;20:173. https://doi.org/10.1186/s12864-019-5560-1
  19. Qin T, Zhang GK, Zheng Y, et al. A population of stem cells with strong regenerative potential discovered in deer antlers. Science 2023;379:840-7. https://doi.org/10.1126/science.add0488
  20. Scheffer-Rath MEA, Veenstra-Knol HE, Boot AM. A novel mutation in PTHLH in a family with a variable phenotype with brachydactyly, short stature, oligodontia and developmental delay. Bone Rep 2023;19:101699. https://doi.org/10.1016/j.bonr.2023.101699
  21. Calvo N, Carriere P, Martin MJ, Gigola G, Gentili C. PTHrP treatment of colon cancer cells promotes tumor associatedangiogenesis by the effect of VEGF. Mol Cell Endocrinol 2019;483:50-63. https://doi.org/10.1016/j.mce.2019.01.005
  22. Hunter T. A journey from phosphotyrosine to phosphohistidine and beyond. Mol Cell 2022;82:2190-2200. https://doi.org/10.1016/j.molcel.2022.05.007
  23. Malik N, Ferreira BI, Hollstein PE, et al. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 2023;380:eabj5559. https://doi.org/10.1126/science.abj5559
  24. Borkowsky S, Gass M, Alavizargar A, et al. Phosphorylation of LKB1 by PDK1 inhibits cell proliferation and organ growth by decreased activation of AMPK. Cells 2023;12:812. https://doi.org/10.3390/cells12050812
  25. Kalpage HA, Wan J, Morse PT, et al. Cytochrome c phosphorylation: control of mitochondrial electron transport chain flux and apoptosis. Int J Biochem Cell Biol 2020;121:105704. https://doi.org/10.1016/j.biocel.2020.105704
  26. Macleod RJ, Chattopadhyay N, Brown EM. PTHrP stimulated by the calcium-sensing receptor requires MAP kinase activation. Am J Physiol Endocrinol Metab 2003;284:E435-42. https://doi.org/10.1152/ajpendo.00143.2002
  27. Faucheux C, Nicholls BM, Allen S, Danks JA, Horton MA, Price JS. Recapitulation of the parathyroid hormone-related peptide-Indian hedgehog pathway in the regenerating deer antler. Dev Dyn 2004;231:88-97. https://doi.org/10.1002/dvdy.20117
  28. Chen YX, Zhang ZX, Jin WJ, et al. Integrative analyses of antler cartilage transcriptome and proteome of gansu red deer (Cervus elaphus kansuensis) at different growth stages. Animals (Basel) 2022;12:934. https://doi.org/10.3390/ani12070934
  29. Guo B, Wang ST, Duan CC, et al. Effects of PTHrP on chondrocytes of sika deer antler. Cell Tissue Res 2013;354:451-60. https://doi.org/10.1007/s00441-013-1670-2
  30. Bullard KM, Longaker MT, Lorenz HP. Fetal wound healing: current biology. World J Surg 2003;27:54-61. https://doi.org/10.1007/s00268-002-6737-2
  31. Wang DT, Berg D, Ba HX, Sun HM, Wang Z, Li CY. Deer antler stem cells are a novel type of cells that sustain full regeneration of a mammalian organ-deer antler. Cell Death Dis 2019;10:443. https://doi.org/10.1038/s41419-019-1686-y
  32. Sun XY, Gu XY, Li K, et al. Melatonin promotes antler growth by accelerating MT1-mediated mesenchymal cell differentiation and inhibiting VEGF-induced degeneration of chondrocytes. Int J Mol Sci 2022;23:759. https://doi.org/10.3390/ijms23020759
  33. Wang DT, Landete-Castillejos T. Stem cells drive antler regeneration. Science 2023;379:757-8. https://doi.org/10.1126/science.adg9968
  34. Kierdorf U, Kierdorf H, Szuwart T. Deer antler regeneration: cells, concepts, and controversies. J Morphol 2007;268:726-38. https://doi.org/10.1002/jmor.10546
  35. Zhang J, Pi CX, Cui C, et al. PTHrP promotes subchondral bone formation in TMJ-OA. Int J Oral Sci 2022;14:37. https://doi.org/10.1038/s41368-022-00189-x
  36. Wang ST, Gao YJ, Duan CC, et al. Effects of PTHrP on expression of MMP9 and MMP13 in sika deer antler chondrocytes. Cell Biol Int 2013;37:1300-7. https://doi.org/10.1002/cbin.10168
  37. Tuckermann JP, Pittois K, Partridge NC, Merregaert J, Angel P. Collagenase-3 (MMP-13) and integral membrane protein 2a (Itm2a) are marker genes of chondrogenic/osteoblastic cells in bone formation: sequential temporal, and spatial expression of Itm2a, alkaline phosphatase, MMP-13, and osteocalcin in the mouse. J Bone Miner Res 2000;15:1257-65. https://doi.org/10.1359/jbmr.2000.15.7.1257
  38. Faucheux C, Nesbitt SA, Horton MA, Price JS. Cells in regenerating deer antler cartilage provide a microenvironment that supports osteoclast differentiation. J Exp Biol 2001;204:443-55. https://doi.org/10.1242/jeb.204.3.443
  39. Faucheux C, Horton MA, Price JS. Nuclear localization of type I parathyroid hormone/parathyroid hormone-related protein receptors in deer antler osteoclasts: evidence for parathyroid hormone-related protein and receptor activator of NF-kappaB-dependent effects on osteoclast formation in regenerating mammalian bone. J Bone Miner Res 2002;17:455-64. https://doi.org/10.1359/jbmr.2002.17.3.455