과제정보
This study was made possible courtesy of the support from the Rural Development Administration (project No: RS-2021-RD010125(PJ016205)) and Chungnam National University, Republic of Korea.
참고문헌
- Cendron F, Mastrangelo S, Tolone M, Perini F, Lasagna E, Cassandro M. Genome-wide analysis reveals the patterns of genetic diversity and population structure of 8 Italian local chicken breeds. Poult Sci 2021;100:441-51. https://doi.org/10.1016/j.psj.2020.10.023
- Cha J, Choo H, Srikanth K, et al. Genome-wide association study identifies 12 loci associated with body weight at age 8 weeks in Korean native chickens. Genes 2021;12:1170. https://doi.org/10.3390/genes12081170
- Jin S, Park HB, Seo DW, et al. Association of MC1R genotypes with shank color traits in Korean native chicken. Livest Sci 2014;170:1-7. https://doi.org/10.1016/j.livsci.2014.10.001
- Jung S, Bae YS, Kim HJ, et al. Carnosine, anserine, creatine, and inosine 5'-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult Sci 2013;92:3275-82. https://doi.org/10.3382/ps.2013-03441
- Kim M, Munyaneza JP, Cho E, et al. Genome-wide association study on the content of nucleotide-related compounds in Korean native chicken breast meat. Animals (Basel) 2023;13:2966. https://doi.org/10.3390/ani13182966
- Caballero A, Rodriguez-Ramilo ST, Avila V, Fernandez J. Management of genetic diversity of subdivided populations in conservation programmes. Conserv Genet 2009;11:409-19. https://doi.org/10.1007/s10592-009-0020-0
- Suh S, Sharma A, Lee S, et al. Genetic diversity, and relationships of Korean chicken breeds based on 30 microsatellite markers. Asian-Australas J Anim Sci 2014;27:1399-405. https://doi.org/10.5713/ajas.2014.14016
- Krupa E, Zakova E, Krupova Z. Evaluation of inbreeding and genetic variability of five pig breeds in czech republic. Asian-Australas J Anim Sci 2015;28:25-36. https://doi.org/10.5713/ajas.14.0251
- Wright S. Coefficients of inbreeding and relationship. Am Nat 1922;56:330-8. https://doi.org/10.1086/279872
- Villanueva B, Fernandez A, Saura M, et al. The value of genomic relationship matrices to estimate levels of inbreeding. Genet Sel Evol 2021;53:42. https://doi.org/10.1186/s12711-021-00635-0
- Keller MC, Visscher PM, Goddard ME. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics 2011;189:237-49. https://doi.org/10.1534/genetics.111.130922
- Zhang Q, Calus MP, Guldbrandtsen B, Lund MS, Sahana G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics 2015;16:88. https://doi.org/10.1186/s12863-015-0227-7
- Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet 2018;19:220-34. https://doi.org/10.1038/nrg.2017.109
- Dadousis C, Ablondi M, Cipolat-Gotet C, et al. Genomic inbreeding coefficients using imputed genotypes: assessing different estimators in Holstein-Friesian dairy cows. J Dairy Sci 2022;105:5926-45. https://doi.org/10.3168/jds.2021-21125
- Bjelland DW, Weigel KA, Vukasinovic N, Nkrumah JD. Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding. J Dairy Sci 2013;96:4697-706. https://doi.org/10.3168/jds.2012-6435
- Huang X, Otecko NO, Peng M, et al. Genome-wide genetic structure, and selection signatures for color in 10 traditional Chinese, yellow-feathered chicken breeds. BMC Genomics 2020;21:316. https://doi.org/10.1186/s12864-020-6736-4
- Fedorova ES, Dementieva NV, Shcherbakov YS, Stanishevskaya OI. Identification of key candidate genes in runs of homozygosity of the genome of two chicken breeds, associated with cold adaptation. Biology 2022;11:547. https://doi.org/10.3390/biology11040547
- Ferencakovic M, Hamzic E, Gredler B, et al. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. J Anim Breed Genet 2012;130:286-93. https://doi.org/10.1111/jbg.12012
- Tian S, Tang W, Zhong Z, et al. Identification of runs of homozygosity islands and functional variants in Wenchang Chicken. Animals (Basel) 2023;13:1645. https://doi.org/10.3390/ani13101645
- Seo D, Lee DH, Choi N, Sudrajad P, Lee SH, Lee JH. Estimation of linkage disequilibrium and analysis of genetic diversity in Korean chicken Lines. PLoS ONE 2018;13:e0192063. https://doi.org/10.1371/journal.pone.0192063
- Salojarvi J. Computational tools for population genomics. In: Rajora OP, editors. Population Genomics. Cham, Switzerland: Springer; 2018. pp. 127-60. https://doi.org/10.1007/13836_2018_57
- Groenen MA, Megens HJ, Zare Y, et al. The development and characterization of a 60k SNP chip for chicken. BMC Genomics 2011;12:274. https://doi.org/10.1186/1471-2164-12-274
- Meyermans R, Gorssen W, Buys N, Janssens S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 2020;21:94. https://doi.org/10.1186/s12864-020-6463-x
- Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015;4:7. https://doi.org/10.1186/s13742-015-0047-8
- Lencz T, Lambert C, DeRosse P, et al. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci USA 2007;104:19942-7. https://doi.org/10.1073/pnas.0710021104
- The R project for statistical computing [Internet]. Vienna, Austria: The R Foundation; c2023 [cited 2024 Feb 5]. Available from: https://www.r-project.org/
- McQuillan R, Leutenegger AL, Abdel-Rahman R, et al. Runs of homozygosity in European populations. Am J Hum Genet 2008;83:359-72. https://doi.org/10.1016/j.ajhg.2008.08.007
- Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011;88:76-82. https://doi.org/10.1016/j.ajhg.2010.11.011
- VanRaden PM, Olson KM, Wiggans GR, Cole JB, Tooker ME. Genomic inbreeding and relationships among Holsteins, jerseys, and Brown Swiss. J Dairy Sci 2011;94:5673-82. https://doi.org/10.3168/jds.2011-4500
- Gorssen W, Meyermans R, Janssens S, Buys N. A publicly available repository of Roh Islands reveals signatures of selection in different livestock and pet species. Genet Sel Evol 2021;53:2. https://doi.org/10.1186/s12711-020-00599-7
- Fonseca PAS, Suarez-Vega A, Marras G, Canovas A. Gallo: an R package for genomic annotation and integration of multiple data sources in livestock for positional candidate loci. GigaScience 2020;9:giaa149. https://doi.org/10.1093/gigascience/giaa149
- Hu Z. Animal QTL database [Internet]. Ames, IA, USA: Animal QTL database; c2024 [cited 2024 Feb 5]. Available from: https://www.animalgenome.org/QTLdb
- Wu X, Zhou R, Zhang W, et al. Genome-wide scan for runs of homozygosity identifies candidate genes in Wannan Black pigs. Anim Biosci 2021;34:1895-902. https://doi.org/10.5713/ab.20.0679
- Xue Q, Li G, Cao Y, et al. Identification of genes involved in inbreeding depression of reproduction in Langshan chickens. Anim Biosci 2021;34:975-84. https://doi.org/10.5713/ajas.20.0248
- Wang Q, Zhang J, Wang H, et al. Estimates of genomic inbreeding and identification of candidate regions in Beijing-You chicken populations. Anim Genet 2023;54:155-65. https://doi.org/10.1111/age.13286
- Ferencakovic M, Solkner J, Curik I. Estimating autozygosity from high-throughput information: effects of SNP density and genotyping errors. Genet Sel Evol 2013;45:42. https://doi.org/10.1186/1297-9686-45-42
- Ferencakovic M, Hamzic E, Gredler B, et al. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. J Anim Breed Genet 2012;130:286-93. https://doi.org/10.1111/jbg.12012
- Hewett AM, Stoffel MA, Peters L, Johnston SE, Pemberton JM. Selection, recombination, and population history effects on runs of homozygosity (ROH) in wild red deer (cervus elaphus). Heredity 2023;130:242-50. https://doi.org/10.1038/s41437-023-00602-z
- Xue J, Peng J, Yuan M, et al. NELL1 promotes high-quality bone regeneration in rat femoral distraction osteogenesis model. Bone 2011;48:485-95. https://doi.org/10.1016/j.bone.2010.10.166
- Lee J, Karnuah AB, Rekaya R, Anthony NB, Aggrey SE. Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat-type chickens. Mol Genet Genom 2015;290:1673-82. https://doi.org/10.1007/s00438-015-1025-7
- Gao C, Du W, Tian K, et al. Analysis of conservation priorities and runs of homozygosity patterns for Chinese indigenous chicken breeds. Animals (Basel) 2023;13:599. https://doi.org/10.3390/ani13040599
- Li Z, Zhang W, Mulholland MW. LGR4 and its role in intestinal protection and energy metabolism. Front Endocrinol 2015;6:131. https://doi.org/10.3389/fendo.2015.00131
- Yang Y, Cong W, Liu J, et al. Constant light in early life induces fear-related behavior in chickens with suppressed melatonin secretion and disrupted hippocampal expression of clock-and BDNF-associated genes. J Anim Sci Biotechnol 2022; 13:67. https://doi.org/10.1186/s40104-022-00720-4
- Zhou S, Ma Y, Zhao D, Mi Y, Zhang C. Transcriptome profiling analysis of underlying regulation of growing follicle development in the chicken. Poult Sci 2020;99:2861-72. https://doi.org/10.1016/j.psj.2019.12.067
- Zhang M, Li D, Zhai Y, et al. The landscape of DNA methylation associated with the transcriptomic network of intramuscular adipocytes generates insight into intramuscular fat deposition in chicken. Front Cell Dev Biol 2020;8:206. https://doi.org/10.3389/fcell.2020.00206
- Zhang Z, Zhong H, Lin S, et al. Polymorphisms of amy1a gene and their association with growth, carcass traits and feed intake efficiency in chickens. Genomics 2021;113:583-94. https://doi.org/10.1016/j.ygeno.2020.10.041
- Bernini F, Bagnato A, Marelli SP, Zaniboni L, Cerolini S, Strillacci MG. Genetic diversity, and identification of homozygosity-rich genomic regions in seven Italian heritage turkey (Meleagris gallopavo) breeds. Genes 2021;12:1342. https://doi.org/10.3390/GENES12091342