DOI QR코드

DOI QR Code

Assessing reproductive performance and predictive models for litter size in Landrace sows under tropical conditions

  • Received : 2023.10.09
  • Accepted : 2024.03.02
  • Published : 2024.08.01

Abstract

Objective: Litter size and piglet loss at birth significantly impact piglet production and are closely associated with sow parity. Understanding how these traits vary across different parities is crucial for effective herd management. This study investigates the patterns of the number of born alive piglets (NBA), number of piglet losses (NPL), and the proportion of piglet losses (PPL) at birth in Landrace sows under tropical conditions. Additionally, it aims to identify the most suitable model for describing these patterns. Methods: A dataset comprising 2,322 consecutive reproductive records from 258 Landrace sows, spanning parities from 1 to 9, was analyzed. Modeling approaches including 2nd and 3rd degree polynomial models, the Wood gamma function, and a longitudinal model were applied at the individual level to predict NBA, NPL, and PPL. The choice of the best-fitting model was determined based on the lowest mean and standard deviation of the difference between predicted and actual values, Akaike information criterion (AIC), and Bayesian information criterion (BIC). Results: Sow parity significantly influenced NBA, NPL, and PPL (p<0.0001). NBA increased until the 4th parity and then declined. In contrast, NPL and PPL decreased until the 2nd parity and then steadily increased until the 8th parity. The 2nd and 3rd degree polynomials, and longitudinal models showed no significant differences in predicting NBA, NPL, and PPL (p>0.05). The 3rd degree polynomial model had the lowest prediction standard deviation and yielded the smallest AIC and BIC. Conclusion: The 3rd degree polynomial model offers the most suitable description of NBA, NPL, and PPL patterns. It holds promise for applications in genetic evaluations to enhance litter size and reduce piglet loss at birth in sows. These findings highlight the importance of accounting for sow parity effects in swine breeding programs, particularly in tropical conditions, to optimize piglet production and sow performance.

Keywords

Acknowledgement

The authors extend their sincere thanks to the commercial pig farm for granting access to sow performance records and their valuable cooperation. Special appreciation is also extended to the Tropical Animal Genetic Special Research Unit (TAGU; Kasetsart University, Bangkok) for their invaluable support throughout the study.

References

  1. Bono C, Cornou C, Lundbye-Christensen S, Kristensen AR. Dynamic production monitoring in pig herds III: modeling and monitoring mortality rate at herd level. Livest Sci 2014; 168:128-38. https://doi.org/10.1016/j.livsci.2014.08.003
  2. Hagan JK, Etim NN. The effects of breed, season and parity on the reproductive performance of pigs reared under hot and humid environments. Trop Anim Health Prod 2019;51:411-8. https://doi.org/10.1007/s11250-018-1705-5
  3. Pinan J, Alegre B, Kirkwood RN, et al. Effect of season and parity on reproduction performance of Iberian sows bred with Duroc semen. Animals (Basel) 2021;11:3275. https://doi.org/10.3390/ani11113275
  4. Zhang T, Wang LG, Shi HB, et al. Heritabilities and genetic and phenotypic correlations of litter uniformity and litter size in Large White sows. J Integr Agric 2016;15:848-54. https://doi.org/10.1016/S2095-3119(15)61155-8
  5. Jaichansukkit T, Suwanasopee T, Koonawootrittriron S, Tummaruk P, Elzo MA. Effect of daily fluctuations in ambient temperature on reproductive failure traits of Landrace and Yorkshire sows under Thai tropical environmental conditions. Trop Anim Health Prod 2017;49:503-8. https://doi.org/10.1007/s11250-017-1221-z
  6. Klimas R, Klimiene A, Sobotka W, Kozera W, Matusevicius P. Effect of parity on reproductive performance sows of different breeds. S Afr J Anim Sci 2020;50:434-41. https://doi.org/10.4314/sajas.v50i3.10
  7. Lavery A, Lawlor PG, Magowan E, Miller HM, O'Driscoll1 K, Berry DP. An association analysis of sow parity, live-weight and back-fat depth as indicators of sow productivity. Animal (Basel) 2019;13:622-30. https://doi.org/10.1017/S1751731118001799
  8. Nevrkla P, Lujka J, Kopec T, et al. Combined effect of sow parity and terminal boar on losses of piglets and pre-weaning growth intensity of piglets. Animals (Basel) 2021;11:3287. https://doi.org/10.3390/ani11113287
  9. Sell-Kubiak E, Knol EF, Mulder HA. Selecting for changes in average "parity curve" pattern of litter size in Large White pigs. J Anim Breed Genet 2019;136:134-48. https://doi.org/10.1111/jbg.12372
  10. Ju M, Wang X, Li X, et al. Effects of litter size and parity on farrowing duration of Landrace × Yorkshire sows. Animals (Basel) 2022;12:94. https://doi.org/10.3390/ani12010094
  11. Jaichansukkit T, Suwanasopee T, Koonawootrittriron S. Genetic parameters for litter traits at birth of Landrace sow populations raised under Thai tropical conditions. Thai J Anim Sci 2014;1:305-8.
  12. Ye J, Tan C, Hu X, Wang A, Wu Z. Genetic parameters for reproductive traits at different parities in Large White pigs. J Anim Sci 2018;96:1215-20. https://doi.org/10.1093/jas/sky066
  13. Ogawa S, Konta A, Kimata M, Ishii K, Uemoto Y, Satoh M. Estimation of genetic parameters for farrowing traits in purebred Landrace and Large White pigs. Anim Sci J 2019;90:23-8. https://doi.org/10.1111/asj.13120
  14. Thiengpimol P, Koonawootrittriron S, Suwanasopee T. Genetic parameters for proportion of piglet loss at birth in a Landrace population. Agric Nat Resour 2020;54:471-8. https://doi.org/10.34044/j.anres.2020.54.5.02
  15. Toft N, Jorgensen E. Estimation of farm specific parameters in a longitudinal model for litter size with variance components and random dropout. Livest Prod Sci 2002;77:175-85. https://doi.org/10.1016/S0301-6226(02)00061-1
  16. Statistical Analysis System (SAS). SAS® 9.3 system options. Cary, NC, USA: SAS Institute Inc.; 2011.
  17. Wood PDP. Algebraic model of the lactation curve in cattle. Nature 1967;216:164-5. https://doi.org/10.1038/216164a0
  18. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr 1974;19:716-23. https://doi.org/10.1109/TAC.1974.1100705
  19. Schwarz G. Estimating the dimension of a model. Ann Stat 1978;6:461-4. https://doi.org/10.1214/aos/1176344136
  20. Segura-Correa JC, Ek-Mex E, Alzina-Lopez A, Segura-Correa VM. Frequency of removal reasons of sows in Southeastern Mexico. Trop Anim Health Prod 2011;43:1583-8. https://doi.org/10.1007/s11250-011-9847-8
  21. Masaka L, Sungirai M, Nyamukanza C, Bhondai C. Sow removal in a commercial pig herd in Zimbabwe. Trop Anim Health Prod 2014;46:725-31. https://doi.org/10.1007/s11250-014-0554-0
  22. Jirattikanpan N, Suwanasopee T, Koonawootrittriron S, Elzo MA. Association between parity proportion and piglet production in Landrace sows. Kaen Kaset 2016;44(Suppl 2):354-60.
  23. Kyriazakis I, Whittemore CT. Whittemore's science and practice of pig production. 3rd ed. Oxford, UK: Blackwell Publishing Ltd; 2006.
  24. Kemp B, Da Silva CLA, Soede NM. Recent advances in pig reproduction: focus on impact of genetic selection for female fertility. Reprod Dom Anim 2018;53(Suppl 2):28-36. https://doi.org/10.1111/rda.13264
  25. Belstra BA. Parity associated changes in reproductive performance: physiological basis? [Internet]. Raleigh, NC, USA: NC State University; 2003 [cited 2022 Mar 16]. Available from: https://porkgateway.org/wp-content/uploads/2015/07/parity-associated-changes-in-reproductive-performance.pdf
  26. Cowart RP. Parturition and dystocia in swine. In: Youngquist RS, Threlfall WR, editors. 2nd ed. Current therapy in large animal theriogenology. Englewood, CO, USA: Saunders; 2007. p.778-84. https://doi.org/10.1016/B978-072169323-1.50106-9
  27. Bloemhof S, Mathur PK, Knol EF, van der Waaij EH. Effect of daily environmental temperature on farrowing rate and total born in dam line sows. J Anim Sci 2013;91:2667-79. https://doi.org/10.2527/jas.2012-5902
  28. Campos PHRF, Silva BAN, Donzele JL, Oliveira RFM, Knol EF. Effects of sow nutrition during gestation on within-litter birth weight variation: a review. Animal (Basel) 2012;6:797-806. https://doi.org/10.1017/S1751731111002242
  29. Pardo CE, Berard J, Kreuzer M, Bee G. Intrauterine crowding impairs formation and growth of secondary myofibers in pigs. Animal (Basel) 2013;7:430-8. https://doi.org/10.1017/S1751731112001802
  30. Borges VF, Bernardi ML, Bortolozzo FP, Wentz I. Risk factors for stillbirth and foetal mummification in four Brazilian swine herds. Prev Vet Med 2005;70:165-76. https://doi.org/10.1016/j.prevetmed.2005.03.003
  31. Sasaki Y, McTaggart I, Koketsu Y. Assessment of lifetime economic returns of sows by parity of culled sows in commercial breeding herds. J Vet Epidemiol 2011;16:37-45. https://doi.org/10.2743/jve.16.37
  32. Tantasuparuk W, Lundeheim N, Dahn AM, Kunavongkrit A, Einarsson S. Reproductive performance of purebred Landrace and Yorkshire sows in Thailand with special reference to seasonal influence and parity number. Theriogenology 2000;54:481-96. https://doi.org/10.1016/s0093-691x(00)00364-2
  33. Vargovic L, Harper JA, Bunter KL. Traits defining sow lifetime maternal performance. Animals (Basel) 2022;12:2451. https://doi.org/10.3390/ani12182451
  34. Plaengkaeo S, Duangjinda M, Stalder KJ. Identifying early indicator traits for sow longevity using a linear-threshold model in Thai Large White and Landrace females. Anim Biosci 2021;34:20-5. https://doi.org/10.5713/ajas.19.0855
  35. Noppibool U, Elzo MA, Koonawootrittriron S, Suwanasopee T. Genetic correlations between first parity and accumulated second to last parity reproduction traits as selection aids to improve sow lifetime productivity. Asian-Australas J Anim Sci 2017;30:320-7. https://doi.org/10.5713/ajas.16.0190
  36. Schaeffer LR. Application of random regression models in animal breeding. Livest Prod Sci 2004;86:35-45. https://doi.org/10.1016/S0301-6226(03)00151-9
  37. Oliveira HR, Brito LF, Lourenco DAL, et al. Invited review: advances and applications of random regression models: from quantitative genetics to genomics. J Dairy Sci 2019;102:7664-83. https://doi.org/10.3168/jds.2019-16265