DOI QR코드

DOI QR Code

Epigenetic regulation of key gene of PCK1 by enhancer and super-enhancer in the pathogenesis of fatty liver hemorrhagic syndrome

  • Yi Wang (Department of Pathophysiology, Anhui Medical University) ;
  • Shuwen Chen (Department of Pathophysiology, Anhui Medical University) ;
  • Min Xue (Department of Pathophysiology, Anhui Medical University) ;
  • Jinhu Ma (Department of Pathophysiology, Anhui Medical University) ;
  • Xinrui Yi (Department of Pathophysiology, Anhui Medical University) ;
  • Xinyu Li (Department of Pathophysiology, Anhui Medical University) ;
  • Xuejin Lu (Department of Pathophysiology, Anhui Medical University) ;
  • Meizi Zhu (Department of Pathophysiology, Anhui Medical University) ;
  • Jin Peng (Department of Pathophysiology, Anhui Medical University) ;
  • Yunshu Tang (Department of Pathophysiology, Anhui Medical University) ;
  • Yaling Zhu (Department of Pathophysiology, Anhui Medical University)
  • Received : 2023.10.18
  • Accepted : 2024.02.18
  • Published : 2024.08.01

Abstract

Objective: Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. Methods: Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. Results: In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. Conclusion: Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (31960690) and Natural Science Foundation of the Anhui Higher Education Institutions (KJ2021 A0205) and Basic and Clinical cooperative research program of Anhui Medical University (2022xkjT013). We are grateful to colleagues in College of Animal Science and Technology, Jiangxi Agricultural University for data collection and experiments.

References

  1. Tan X, Liu R, Zhang Y, et al. Integrated analysis of the methylome and transcriptome of chickens with fatty liver hemorrhagic syndrome. BMC Genomics 2021;22:8. https://doi.org/10.1186/s12864-020-07305-3 
  2. Jian H, Xu Q, Wang X, et al. Amino acid and fatty acid metabolism disorders trigger oxidative stress and inflammatory response in excessive dietary valine-induced NAFLD of laying hens. Front Nutr 2022;9:849767. https://doi.org/10.3389/fnut.2022.849767 
  3. Wu XL, Zou XY, Zhang M, et al. Osteocalcin prevents insulin resistance, hepatic inflammation, and activates autophagy associated with high-fat diet-induced fatty liver hemorrhagic syndrome in aged laying hens. Poult Sci 2021;100:73-83. https://doi.org/10.1016/j.psj.2020.10.022 
  4. Yao Y, Li L, Wang H, Yang Y, Ma H. Activated AMP-activated protein kinase prevents hepatic steatosis, oxidative stress and inflammation in primary chicken hepatocytes. Front Physiol 2022;13:974825. https://doi.org/10.3389/fphys.2022.974825 
  5. Yao Y, Wang H, Yang Y, Jiang Z, Ma H. Dehydroepiandrosterone activates the GPER-mediated AMPK signaling pathway to alleviate the oxidative stress and inflammatory response in laying hens fed with high-energy and low-protein diets. Life Sci 2022;308:120926. https://doi.org/10.1016/j.lfs.2022.120926 
  6. Liu M, Cao S, He L, et al. Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis. Nat Commun 2021;12:4560. https://doi.org/10.1038/s41467-021-24843-w 
  7. Wang S, Zang C, Xiao T, et al. Modeling cis-regulation with a compendium of genome-wide histone H3K27ac profiles. Genome Res 2016;26:1417-29. https://doi.org/10.1101/gr.201574.115 
  8. Li K, Li H, Zhang K, et al. Orphan nuclear receptor RORγ modulates the genome-wide binding of the cholesterol metabolic genes during mycotoxin-induced liver injury. Nutrients 2021;13:2539. https://doi.org/10.3390/nu13082539 
  9. Barilla S, Liang N, Mileti E, et al. Loss of G protein pathway suppressor 2 in human adipocytes triggers lipid remodeling by upregulating ATP binding cassette subfamily G member 1. Mol Metab 2020;42:101066. https://doi.org/10.1016/j.molmet.2020.101066 
  10. Cai D, Li Y, Zhang K, et al. Co-option of PPARα in the regulation of lipogenesis and fatty acid oxidation in CLAinduced hepatic steatosis. J Cell Physiol 2021;236:4387-402. https://doi.org/10.1002/jcp.30157 
  11. Wu F, Xu L, Tu Y, et al. Sirtuin 7 super-enhancer drives epigenomic reprogramming in hepatocarcinogenesis. Cancer Lett 2022;525:115-30. https://doi.org/10.1016/j.canlet.2021.10.039 
  12. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 2013;29:15-21. https://doi.org/10.1093/bioinformatics/bts635 
  13. Liao Y, Smyth GK, Shi W. Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics (Oxford, England) 2014;30:923-30. https://doi.org/10.1093/bioinformatics/btt656 
  14. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8 
  15. Abuin JM, Pichel JC, Pena TF, Amigo J. BigBWA: approaching the burrows-wheeler aligner to big data technologies. Bioinformatics (Oxford, England) 2015;31:4003-5. https://doi.org/10.1093/bioinformatics/btv506 
  16. Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008;9:R137. https://doi.org/10.1186/gb-2008-9-9-r137 
  17. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England) 2010;26:841-2. https://doi.org/10.1093/bioinformatics/btq033 
  18. Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics (Oxford, England) 2009;25:2078-9. https://doi.org/10.1093/bioinformatics/btp352 
  19. Ma J, You D, Chen S, et al. Epigenetic association study uncovered H3K27 acetylation enhancers and dysregulated genes in high-fat-diet-induced nonalcoholic fatty liver disease in rats. Epigenomics 2022;14:1523-40. https://doi.org/10.2217/epi-2022-0362 
  20. Ramirez F, Ryan DP, Gruning B, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 2016;44:W160-5. https://doi.org/10.1093/nar/gkw257 
  21. Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013;153:307-19. https://doi.org/10.1016/j.cell.2013.03.035 
  22. Millward CA, Desantis D, Hsieh CW, et al. Phosphoenolpyruvate carboxykinase (Pck1) helps regulate the triglyceride/ fatty acid cycle and development of insulin resistance in mice. J Lipid Res 2010;51:1452-63. https://doi.org/10.1194/jlr.M005363 
  23. Li CX, Chen LL, Li XC, et al. ApoA-1 accelerates regeneration of small-for-size fatty liver graft after transplantation. Life Sci 2018;215:128-35. https://doi.org/10.1016/j.lfs.2018.10.053 
  24. Qu J, Ko CW, Tso P, Bhargava A. Apolipoprotein A-IV: a multifunctional protein involved in protection against atherosclerosis and diabetes. Cells 2019;8:319. https://doi.org/10.3390/cells8040319 
  25. Qian H, Wu X, Du X, et al. Structural basis of low-pHdependent lysosomal cholesterol egress by NPC1 and NPC2. Cell 2020;182:98-111 e18. https://doi.org/10.1016/j.cell.2020.05.020 
  26. Pi H, Liu M, Xi Y, et al. Long-term exercise prevents hepatic steatosis: a novel role of FABP1 in regulation of autophagylysosomal machinery. FASEB J 2019;33:11870-83. https://doi.org/10.1096/fj.201900812R 
  27. Teng HK, Teng KK, Lee R, et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 2005;25:5455-63. https://doi.org/10.1523/jneurosci.5123-04.2005 
  28. Xia Y, Wei K, Yang FM, et al. miR-1260b, mediated by YY1, activates KIT signaling by targeting SOCS6 to regulate cell proliferation and apoptosis in NSCLC. Cell Death Dis 2019;10:112. https://doi.org/10.1038/s41419-019-1390-y 
  29. Guerit E, Arts F, Dachy G, Boulouadnine B, Demoulin JB. PDGF receptor mutations in human diseases. Cell Mol Life Sci 2021;78:3867-81. https://doi.org/10.1007/s00018-020-03753-y
  30. Stiffel VM, Thomas A, Rundle CH, Sheng MH, Lau KW. The EphA4 signaling is anti-catabolic in synoviocytes but pro-anabolic in articular chondrocytes. Calcif Tissue Int 2020;107:576-92. https://doi.org/10.1007/s00223-020-00747-7 
  31. Zhao Y, Zhang D, Guo Y, et al. Tyrosine kinase ROR1 as a target for anti-cancer therapies. Front Oncol 2021;11:680834. https://doi.org/10.3389/fonc.2021.680834 
  32. Lebeck J. Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol 2014;52:R165-78. https://doi.org/10.1530/jme-13-0268 
  33. Sugiyama M, Kikuchi A, Misu H, et al. Inhibin βE (INHBE) is a possible insulin resistance-associated hepatokine identified by comprehensive gene expression analysis in human liver biopsy samples. PLoS ONE 2018;13:e0194798. https://doi.org/10.1371/journal.pone.0194798 
  34. Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2015;62:720-33. https://doi.org/10.1016/j.jhep.2014.10.039 
  35. Hasenfuss SC, Bakiri L, Thomsen MK, Williams EG, Auwerx J, Wagner EF. Regulation of steatohepatitis and PPARgamma signaling by distinct AP-1 dimers. Cell Metab 2014;19:84-95. https://doi.org/10.1016/j.cmet.2013.11.018 
  36. Sun Y, Liu WZ, Liu T, Feng Xu, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Tranuct Res 2015;35:600-4. https://doi.org/10.3109/10799893.2015.1030412 
  37. Xu D, Wang Z, Xia Y, et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis. Nature 2020;580:530-5. https://doi.org/10.1038/s41586-020-2183-2 
  38. Burgermeister E, Seger R. MAPK kinases as nucleo-cytoplasmic shuttles for PPARgamma. Cell Cycle 2007;6:1539-48. https://doi.org/10.4161/cc.6.13.4453 
  39. Qi W, Zeng D, Xiong X, Hu Q. Knockdown of SEMA7A alleviates MPP(+) -induced apoptosis and inflammation in BV2 microglia via PPAR-γ activation and MAPK inactivation. Immun Inflamm Dis 2023;11:e756. https://doi.org/10.1002/iid3.756 
  40. Hu T, Lin Q, Guo T, et al. Polysaccharide isolated from Phellinus linteus mycelia exerts anti-inflammatory effects via MAPK and PPAR signaling pathways. Carbohydr Polym 2018;200:487-97. https://doi.org/10.1016/j.carbpol.2018.08.021 
  41. Xiang J, Chen C, Liu R, et al. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J Clin Invest 2021;131:e144703. https://doi.org/10.1172/JCI144703 
  42. Satapati S, Kucejova B, Duarte JA, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest 2015;125:4447-62. https://doi.org/10.1172/JCI82204 
  43. Deaton AM, Dubey A, Ward LD, et al. Rare loss of function variants in the hepatokine gene INHBE protect from abdominal obesity. Nat Commun 2022;13:4319. https://doi.org/ 10.1038/s41467-022-31757-8