Acknowledgement
This study was supported by Taizhou Science and Technology Support Plan (Agriculture) Project (TN202313) and the National Natural Science Foundation of China (Grant Nos. 32272825), the Open Project Program of the International Joint Research Laboratory of the Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement (IJRLD-KF202210) and, Independent Innovation in Jiangsu Province of China (CX (21) 3119); "Qing Lan Project" and the"High-end talent support program" of Yangzhou University, China.
References
- Chen Z, Lu Q, Zhang X, et al. Circ007071 Inhibits unsaturated fatty acid synthesis by Interacting with miR-103-5p to enhance PPARγ expression in the dairy goat mammary gland. J Agric Food Chem 2022;70:13719-29. https://doi.org/10.1021/acs.jafc.2c06174
- Chen Z, Cao X, Lu Q, et al. circ01592 regulates unsaturated fatty acid metabolism through adsorbing miR-218 in bovine mammary epithelial cells. Food Funct 2021;12:12047-58. https://doi.org/10.1039/d1fo02797b
- Wang MQ, Zhou CH, Cong S, et al. Lipopolysaccharide inhibits triglyceride synthesis in dairy cow mammary epithelial cells by upregulating miR-27a-3p, which targets the PPARG gene. J Dairy Sci 2021;104:989-1001. https://doi.org/10.3168/jds.2020-18270
- Wilson HE, Stanton DA, Rellick S, Geldenhuys W, Pistilli EE. Breast cancer-associated skeletal muscle mitochondrial dysfunction and lipid accumulation is reversed by PPARG. Am J Physiol Cell Physiol 2021;320:C577-90. https://doi.org/10.1152/ajpcell.00264.2020
- Pham DV, Tilija Pun N, Park PH. Autophagy activation and SREBP-1 induction contribute to fatty acid metabolic reprogramming by leptin in breast cancer cells. Mol Oncol 2021;15:657-78. https://doi.org/10.1002/1878-0261.12860
- Zhao Q, Lin X, Wang G. Targeting SREBP-1-mediated lipogenesis as potential strategies for cancer. Front Oncol 2022;12:952371. https://doi.org/10.3389/fonc.2022.952371
- Peterson DG, Matitashvili EA, Bauman DE. The inhibitory effect of trans-10, cis-12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1. J Nutr 2004;134:2523-7. https://doi.org/10.1093/jn/134.10.2523
- Lu Q, Zong W, Zhang M, Chen Z, Yang Z. The overlooked transformation mechanisms of VLCFAs: peroxisomal β-oxidation. Agriculture 2022;12:947. https://doi.org/10.3390/agriculture12070947
- Chen GH, Luo Z, Hogstrand C, Wu K, Ling SC. SREBP1, PPARG and AMPK pathways mediated the Cu-induced change in intestinal lipogenesis and lipid transport of yellow catfish Pelteobagrus fulvidraco. Food Chem 2018;269:595-602. https://doi.org/10.1016/j.foodchem.2018.07.048
- Mu T, Hu H, Ma Y, Feng X, Zhang J, Gu Y. Regulation of key genes for milk fat synthesis in ruminants. Front Nutr 2021;8:765147. https://doi.org/10.3389/fnut.2021.765147
- Zaidi N, Lupien L, Kuemmerle NB, Kinlaw WB, Swinnen JV, Smans K. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res 2013;52:585-9. https://doi.org/10.1016/j.plipres.2013.08.005
- Bionaz M, Loor JJ. Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinform Biol Insights 2011 May 4 [Epub]. https://doi.org/10.4137/BBI.S7003
- Chen Z, Chu S, Liang Y, et al. miR-497 regulates fatty acid synthesis via LATS2 in bovine mammary epithelial cells. Food Funct 2020;11:8625-36. https://doi.org/10.1039/d0fo00952k
- Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. Wiley Interdiscip Rev RNA 2021;12:e1662. https://doi.org/10.1002/wrna.1662
- Lu Q, Chen Z, Ji D, et al. Progress on the regulation of ruminant milk fat by noncoding RNAs and ceRNAs. Front Genet 2021;12:733925. https://doi.org/10.3389/fgene.2021.733925
- Chen Z, Lu Q, Liang Y, et al. Circ11103 interacts with miR-128/PPARGC1A to regulate milk fat metabolism in dairy cows. J Agric Food Chem 2021;69:4490-500. https://doi.org/10.1021/acs.jafc.0c07018
- Monoe Y, Jingushi K, Kawase A, et al. Pharmacological inhibition of miR-130 family suppresses bladder tumor growth by targeting various oncogenic pathways via PTPN1. Int J Mol Sci 2021;22:4751. https://doi.org/10.3390/ijms22094751
- Zhang HD, Jiang LH, Sun DW, Li J, Ji ZL. The role of miR130a in cancer. Breast Cancer 2017;24:521-7. https://doi.org/10.1007/s12282-017-0776-x
- Wei MC, Wang YM, Wang DW. miR-130a-mediated KLF3 can inhibit the growth of lung cancer cells. Cancer Manag Res 2021;13:2995-3004. https://doi.org/10.2147/CMAR.S281203
- Egawa H, Jingushi K, Hirono T, et al. The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN. Sci Rep 2016;6:20574. https://doi.org/10.1038/srep20574
- Nisenblat V, Bossuyt PM, Shaikh R, et al. Blood biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst Rev 2016;2016:CD012179. https://doi.org/10.1002/14651858.CD012179
- Zhou Q, Liu J, Quan J, Liu W, Tan H, Li W. MicroRNAs as potential biomarkers for the diagnosis of glioma: a systematic review and meta-analysis. Cancer Sci 2018;109:2651-9. https://doi.org/10.1111/cas.13714
- Kamity R, Sharma S, Hanna N. MicroRNA-mediated control of inflammation and tolerance in pregnancy. Front Immunol 2019;10:718. https://doi.org/10.3389/fimmu.2019.00718
- Wang L, Sinnott-Armstrong N, Wagschal A, et al. A microRNA linking human positive selection and metabolic disorders. Cell 2020;183:684-701.E14. https://doi.org/10.1016/j.cell.2020.09.017
- Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol 2009;4:199-227. https://doi.org/10.1146/annurev.pathol.4.110807.092222
- Chen Z, Shi H, Sun S, et al. MiR-183 regulates milk fat metabolism via MST1 in goat mammary epithelial cells. Gene 2018;646:12-9. https://doi.org/10.1016/j.gene.2017.12.052
- Chen Z, Qiu H, Ma L, et al. miR-30e-5p and miR-15a synergistically regulate fatty acid metabolism in goat mammary epithelial cells via LRP6 and YAP1. Int J Mol Sci 2016;17:1909. https://doi.org/10.3390/ijms17111909
- Tang KQ, Wang YN, Zan LS, Yang WC. miR-27a controls triacylglycerol synthesis in bovine mammary epithelial cells by targeting peroxisome proliferator-activated receptor gamma. J Dairy Sci 2017;100:4102-12. https://doi.org/10.3168/jds.2016-12264
- Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature 2015;519:482-5. https://doi.org/10.1038/nature14281
- Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol 2018;141:1202-7. https://doi.org/10.1016/j.jaci.2017.08.034
- Ma S, Zhou B, Yang Q, et al. A transcriptional regulatory loop of master regulator transcription factors, PPARG, and fatty acid synthesis promotes esophageal adenocarcinoma. Cancer Res 2021;81:1216-29. https://doi.org/10.1158/0008-5472.CAN-20-0652
- Zheng JS, Chen J, Wang L, et al. Replication of a gene-diet interaction at CD36, NOS3 and PPARG in response to Omega-3 fatty acid supplements on blood lipids: a double-blind randomized controlled trial. EBioMedicine 2018;31: 150-6. https://doi.org/10.1016/j.ebiom.2018.04.012
- Jing Y, Chen Y, Wang S, et al. Circadian gene PER2 silencing downregulates PPARG and SREBF1 and suppresses lipid synthesis in bovine mammary epithelial cells. Biology 2021;10:1226. https://doi.org/10.3390/biology10121226
- Bionaz M, Loor JJ. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 2008;9:366. https://doi.org/10.1186/1471-2164-9-366
- Bionaz M, Loor JJ. Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol Genomics 2007;29:312-9. https://doi.org/10.1152/physiolgenomics.00223.2006