DOI QR코드

DOI QR Code

Supplemental effects of different production methods of pine needle additives on growth performance, intestinal environment, meat quality and serum of broiler chickens

  • Yi-Qiang Chang (Department of Animal Science and Technology, Konkuk University) ;
  • Seung-Kyu Moon (Department of Animal Science and Technology, Konkuk University) ;
  • Yan-Qing Wang (Department of Animal Science and Technology, Konkuk University) ;
  • Liu-Ming Xie (Department of Animal Science and Technology, Konkuk University) ;
  • Hang-sul Cho (Department of Animal Science and Technology, Konkuk University) ;
  • Soo-Ki Kim (Department of Animal Science and Technology, Konkuk University)
  • 투고 : 2024.01.23
  • 심사 : 2024.04.09
  • 발행 : 2024.07.01

초록

Objective: Pine needles are rich in many nutrients and exhibit antibacterial and antioxidant biological activities; however, the effects of different production methods of pine needle additives on the growth performance and intestinal flora of broiler chickens are not known. Methods: Normal diets were supplemented with pine needle fermentation juice (PNF), pine needle soaking juice (PNS), or pine needle powder (PNP), and the associated effects on growth performance, relative organ weights, intestinal development, intestinal histological morphology, intestinal flora, meat quality, and serum indicators in broiler chickens were observed. Results: The results showed that PNF, PNS, and PNP all significantly improved feed utilization and promoted the growth and development of broilers. All three additives also significantly improved the structure of the intestinal flora, specifically increasing the diversity of bacteria; increasing the abundance of beneficial bacteria, such as Faecalibacterium, Rikenella, and Blautia; and decreasing the abundance of harmful bacteria, such as Staphylococcus. The antioxidant properties of pine needles were also found to intensify lipid metabolic reactions in the blood, thus leading to lower triglycerides and total cholesterol. Meanwhile, high doses of PNF reduced jejunum and ileum weights and also increased meat yellowness. Lastly, none of PNF, PNS, or PNP had an effect on relative organ weights or intestinal histological morphology. Conclusion: The addition of pine needles to the diet of broiler chickens can effectively promote their growth performance as well as improve their intestinal flora and serum status without side effects; in particular, the dose of 0.2% of either PNF and PNS is expected to have the capacity to replace growth-promoting antibiotics as diet additives.

키워드

참고문헌

  1. Casewell M, Friis C, Marco E, McMullin P, Phillips I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 2003;52:159-61. https://doi.org/10.1093/jac/dkg313
  2. Cheng G, Hao H, Xie S, et al. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol 2014;5:217. https://doi.org/10.3389/fmicb.2014.00217
  3. Negi PS. Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol 2012;156:7-17. https://doi.org/10.1016/j.ijfoodmicro.2012.03.006
  4. Zeng Z, Zhang S, Wang H, Piao X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. J Anim Sci Biotechnol 2015;6:7. https://doi.org/10.1186/s40104-015-0004-5
  5. Jamroz D, Wiliczkiewicz A, Wertelecki T, Orda J, Skorupinska J. Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. Br Poult Sci 2005;46:485-93. https://doi.org/10.1080/00071660500191056
  6. Hernandez F, Madrid J, Garcia V, Orengo J, Megias MD. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult Sci 2004;83:169-74. https://doi.org/10.1093/ps/83.2.169
  7. Yen GC, Duh PD, Huang DW, Hsu CL, Fu TYC. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food Chem Toxicol 2008;46:175-85. https://doi.org/10.1016/j.fct.2007.07.012
  8. Kwak CS, Moon SC, Lee MS. Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora). Nutr Cancer 2006;56:162-71. https://doi.org/10.1207/s15327914nc5602_7
  9. Zeng WC, He Q, Sun Q, Zhong K, Gao H. Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara. Int J Food Microbiol 2012;153:78-84. https://doi.org/10.1016/j.ijfoodmicro.2011.10.019
  10. Rubens J, Kibilds J, Jansons M, et al. Application of baltic pine (Pinus sylvestris) needle extract as a gut microbiota-modulating feed supplement for domestic chickens (Gallus gallus). Plants 2023;12:297. https://doi.org/10.3390/plants12020297
  11. Guo Y, Huang S, Zhao L, Zhang J, Ji C, Ma Q. Pine (Pinus massoniana Lamb.) needle extract supplementation improves performance, egg quality, serum parameters, and the gut microbiome in laying hens. Front Nutr 2022;9:810462. https://doi.org/10.3389/fnut.2022.810462
  12. Sanlier N, Gokcen BB, Sezgin AC. Health benefits of fermented foods. Crit Rev Food Sci Nutr 2019;59:506-27. https://doi.org/10.1080/10408398.2017.1383355
  13. Mordenti AL, Giaretta E, Campidonico L, Parazza P, Formigoni A. A review regarding the use of molasses in animal nutrition. Animals 2021;11:115. https://doi.org/10.3390/ani11010115
  14. Neacsu M, Vaughan N, Raikos V, et al. Phytochemical profile of commercially available food plant powders: their potential role in healthier food reformulations. Food Chem 2015;179:159-69. https://doi.org/10.1016/j.foodchem.2015.01.128
  15. Moon SG, Kothari D, Kim WL, et al. Feasibility of sodium long chain polyphosphate as a potential growth promoter in broilers. J Anim Sci Technol 2021;63:1286-300. https://doi.org/10.5187/jast.2021.e110
  16. Niu KM, Khosravi S, Kothari D, et al. Effects of dietary multi-strain probiotics supplementation in a low fishmeal diet on growth performance, nutrient utilization, proximate composition, immune parameters, and gut microbiota of juvenile olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 2019;93:258-68. https://doi.org/10.1016/j.fsi.2019.07.056
  17. Hwang YA, Lee WD, Kim J, et al. In vitro fermentation characteristics of pine needles (pinus densiflora) as feed additive. Fermentation 2023;9:415. https://doi.org/10.3390/fermentation9050415
  18. Bai K, Huang Q, Zhang J, He J, Zhang L, Wang T. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci 2017;96:74-82. https://doi.org/10.3382/ps/pew246
  19. Park BS. Effect of dietary antibiotic replacement with Korean red pine bark extracts in broiler diets. J Life Sci 2010;20:1047-53. https://doi.org/10.5352/JLS.2010.20.7.1047
  20. Kothari D, Oh JS, Kim JH, Lee WD, Kim SK. Effect of dietary supplementation of fermented pine needle extract on productive performance, egg quality, and serum lipid parameters in laying hens. Animals (Basel) 2021;11:1475. https://doi.org/10.3390/ani11051475
  21. Wu QJ, Wang YQ, Qi YX. Influence of procyanidin supplementation on the immune responses of broilers challenged with lipopolysaccharide. Anim Sci J 2017;88:983-90. https://doi.org/10.1111/asj.12729
  22. Li X, Mo K, Tian G, et al. Shikimic acid regulates the NF-kappaB/MAPK signaling pathway and gut microbiota to ameliorate DSS-induced ulcerative colitis. J Agric Food Chem 2023;71:8906-14. https://doi.org/10.1021/acs.jafc.3c00283
  23. Alshamy Z, Richardson KC, Harash G, et al. Structure and age-dependent growth of the chicken liver together with liver fat quantification: a comparison between a dual-purpose and a broiler chicken line. PLoS One 2019;14:e0226903. https://doi.org/10.1371/journal.pone.0226903
  24. Lee GS, Yang HG, Kim JH, Ahn YM, Han MD, Kim WJ. Pine (Pinus densiflora) needle extract could promote the expression of PCNA and Ki-67 after partial hepatectomy in rat. Acta Cir Bras 2019;34:e201900606. https://doi.org/10.1590/s0102-865020190060000006
  25. Chung YJ, Bae MW, Chung KS. Immunosuppressive effect of the intraperitonially injected pine needle distillate in mice. J Food Sci Nutr 2003;8:7-12. https://doi.org/10.3746/jfn.2003.8.1.007
  26. Khan IU, Shah AA, Sahibzada FA, et al. Carcass characteristics and serum biochemical profile of Japanese quail by the supplementation of pine needles and vitamin E powder. Biologia 2019;74:993-1000. https://doi.org/10.2478/s11756-019-00225-y
  27. Yang HM, Wang W, Wang ZY, Wang J, Cao YJ, Chen YH. Comparative study of intestine length, weight and digestibility on different body weight chickens. Afr J Biotechnol 2013; 12:5097-100. https://doi.org/10.5897/ajb11.4014
  28. Guo A, Cheng L, Al-Mamun M, Xiong C, Yang S. Effect of dietary pine needles powder supplementation on growth, organ weight and blood biochemical profiles in broilers. J Appl Anim Res 2017;46:518-22. https://doi.org/10.1080/09712119.2017.1351977
  29. Zhang B, Liu N, Hao M, Xie Y, Song P. Effects of substitution of soybean meal with rapeseed meal and glutamine supplementation on growth performance, intestinal morphology, and intestinal mucosa barrier of Qiandongnan Xiaoxiang Chicken. Anim Biosci 2022;35:1711-24. https://doi.org/10.5713/ab.21.0467
  30. Gungor E, Altop A, Erener G. Effect of raw and fermented grape pomace on the growth performance, antioxidant status, intestinal morphology, and selected bacterial species in broiler chicks. Animals (Basel) 2021;11:364. https://doi.org/10.3390/ani11020364
  31. Xie L, Chen T, Qi X, et al. Exopolysaccharides from genistein-stimulated Monascus purpureus ameliorate cyclophosphamide-induced intestinal injury via PI3K/AKT-MAPKs/NF-kappaB pathways and regulation of gut microbiota. J Agric Food Chem 2023;71:12986-3002. https://doi.org/10.1021/acs.jafc.3c03186
  32. Dhama K, Mahendran M, Tiwari R, et al. Tuberculosis in birds: insights into the Mycobacterium avium infections. Vet Med Int 2011;2011:712369. https://doi.org/10.4061/2011/712369
  33. Zhang T, Zheng R, Liu R, Li R, Sun C. Cultivation and functional characterization of a deep-sea Lentisphaerae representative reveals its unique physiology and ecology. Front Mar Sci 2022;9:848136. https://doi.org/10.3389/fmars.2022.848136
  34. Welch KD, Stonecipher CA, Gardner DR, Cook D, Pfister JA. Changes in the rumen bacterial microbiome of cattle exposed to ponderosa pine needles. J Anim Sci 2017;95:2314-22. https://doi.org/10.2527/jas2016.1228
  35. Liu X, Mao B, Gu J, et al. Blautia-a new functional genus with potential probiotic properties? Gut microbes 2021;13:e1875796. https://doi.org/10.1080/19490976.2021.1875796
  36. Miquel S, Martin R, Rossi O, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 2013;16:255-61. https://doi.org/10.1016/j.mib.2013.06.003
  37. Bai J, Wu Y, Liu X, Zhong K, Huang Y, Gao H. antibacterial activity of shikimic acid from pine needles of Cedrus deodara against Staphylococcus aureus through damage to cell membrane. Int J Mol Sci 2015;16:27145-55. https://doi.org/10.3390/ijms161126015
  38. Luciano G, Monahan FJ, Vasta V, Biondi L, Lanza M, Priolo A. Dietary tannins improve lamb meat colour stability. Meat Sci 2009;81:120-5. https://doi.org/10.1016/j.meatsci.2008.07.006
  39. Rajput N, Ali S, Naeem M, Khan MA, Wang T. The effect of dietary supplementation with the natural carotenoids curcumin and lutein on pigmentation, oxidative stability and quality of meat from broiler chickens affected by a coccidiosis challenge. Br Poult Sci 2014;55:501-9. https://doi.org/10.1080/00071668.2014.925537
  40. Kim YJ. Effect of dietary mugwort (Artemisia vulgaris L.) and pine needle powder (Pinus densiflora) on growth performance, serum cholesterol levels, and meat quality in broilers. Afr J Biotechnol 2012;11:11866-73. https://doi.org/10.5897/ajb11.3782