과제정보
This work was supported by the National Natural Science Foundation of China (32202704) and China Agriculture Research System of MOF and MARA (CARS-42-27).
참고문헌
- Qian Y, Song K, Hu T, Ying T. Environmental status of livestock and poultry sectors in China under current transformation stage. Sci Total Environ 2018;622-3:702-9. https://doi.org/10.1016/j.scitotenv.2017.12.045
- Deng MT, Zhu F, Yang YZ, et al. Genome-wide association study reveals novel loci associated with body size and carcass yields in Pekin ducks. BMC Genomics 2019;20:1 https://doi.org/10.1186/s12864-018-5379-1
- Fu Z, Yang H, Xiao Y, et al. Ileal microbiota alters the immunity statues to affect body weight in muscovy ducks. Front Immunol 2022;13:844102. https://doi.org/10.3389/fimmu.2022.844102
- Khajeh Bami M, Afsharmanesh M, Ebrahimnejad H. Effect of dietary bacillus coagulans and different forms of zinc on performance intestinal microbiota carcass and meat quality of broiler chickens. Probiotics Antimicrob Proteins 2020;12:461-72. https://doi.org/10.1007/s12602-019-09558-1
- Janssen AWF, Kersten S. The role of the gut microbiota in metabolic health. FASEB J 2015;29:3111-23. https://doi.org/10.1096/fj.14-269514
- Wei RX, Ye FJ, He F, et al. Comparison of overfeeding effects on gut physiology and microbiota in two goose breeds. Poult Sci 2021;100:100960. https://doi.org/10.1016/j.psj.2020.12.057
- Wang S, Chen L, He M, et al. Different rearing conditions alter gut microbiota composition and host physiology in Shaoxing ducks. Sci Rep 2018;8:7387 https://doi.org/10.1038/s41598-018-25760-7
- Ma L, Lyu W, Zeng T, et al. Duck gut metagenome reveals the microbiome signatures linked to intestinal regional, temporal development, and rearing condition. iMeta 2024;e198. https://doi.org/10.1002/imt2.198
- Lyu W, Yang H, Li N, et al. Molecular characterization, developmental expression, and modulation of occludin by early intervention with Clostridium butyricum in Muscovy ducks. Poult Sci 2021;100:101271. https://doi.org/10.1016/j.psj.2021.101271
- Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-80. https://doi.org/10.1038/nature09944
- Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-8. https://doi.org/10.1126/science.1208344
- Li JP, Wu QF, Ma SC, et al. Effect of feed restriction on the intestinal microbial community structure of growing ducks. Arch Microbiol 2022;204:85. https://doi.org/10.1007/s00203-021-02636-5
- Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222-7. https://doi.org/10.1038/nature11053
- Cheng M, Ning K. Stereotypes about enterotype: the old and new ideas. Genomics Proteomics Bioinformatics 2019;17:4-12. https://doi.org/10.1016/j.gpb.2018.02.004
- Moeller AH, Degnan PH, Pusey AE, Wilson ML, Hahn BH, Ochman H. Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat Commun 2012;3:1179. https://doi.org/10.1038/ncomms2159
- Fan C, Zhang L, Fu H, et al. Enterotypes of the gut microbial community and their response to plant secondary compounds in plateau pikas. Microorganisms 2020;8:1311. https://doi.org/10.3390/microorganisms8091311
- Guo N, Wu Q, Shi F, et al. Seasonal dynamics of diet-gut microbiota interaction in adaptation of yaks to life at high altitude. NPJ Biofilms Microbiomes 2021;7:38. https://doi.org/10.1038/s41522-021-00207-6
- Christensen L, Roager HM, Astrup A, Hjorth MF. Microbial enterotypes in personalized nutrition and obesity management. Am J Clin Nutr 2018;108:645-51. https://doi.org/10.1093/ajcn/nqy175
- Lyu W, Liu X, Lu L, et al. Cecal microbiota modulates fat deposition in muscovy ducks. Front Vet Sci 2021;8:609348. https://doi.org/10.3389/fvets.2021.609348
- Ministry of Agriculture and Rural Development. Poultry production performance nomenclature and statistical methods of measurement. Beijing, China: Ministry of Agriculture and Rural Development; 2020. NY/T 823-2020.
- Xiao Y, Kong F, Xiang Y, et al. Comparative biogeography of the gut microbiome between Jinhua and Landrace pigs. Sci Rep 2018;8:5985. https://doi.org/10.1038/s41598-018-24289-z
- Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73:5261-7. https://doi.org/10.1128/AEM.00062-07
- Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc 1952;47:583-621. https://doi.org/10.1080/01621459.1952.10483441
- Best DJ, Roberts DE. The upper tail probabilities of spearman's rho. J R Stat Soc Ser C Appl Stat 2018;24:377-9. https://doi.org/10.2307/2347111
- Chang F, He S, Dang C. Assisted selection of biomarkers by linear discriminant analysis effect size (LEfSe) in microbiome data. J Vis Exp 2022;183:e61715. https://doi.org/10.3791/61715
- Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD. Composition of the early intestinal microbiota: knowledge knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 2012;3:203-20. https://doi.org/10.4161/gmic.20169
- Yang H, Lyu W, Lu L, et al. Biogeography of microbiome and short-chain fatty acids in the gastrointestinal tract of duck. Poult Sci 2020;99:4016-27. https://doi.org/10.1016/j.psj.2020.03.040
- Chen X, Zheng M, Lin F, et al. Impacts of novel duck reovirus infection on the composition of intestinal microbiota of Muscovy ducklings. Microb Pathog 2019;137:103764. https://doi.org/10.1016/j.micpath.2019.103764
- Chen X, Zheng M, Huang M, et al. Muscovy duck reovirus infection disrupts the composition of intestinal microbiota in muscovy ducklings. Curr Microbiol 2020;77:769-78. https://doi.org/10.1007/s00284-019-01865-8
- Vasai F, Ricaud KB, Bernadet MD, et al. Overfeeding and genetics affect the composition of intestinal microbiota in Anas platyrhynchos (Pekin) and Cairina moschata (Muscovy) ducks. FEMS Microbiol Ecol 2014;87:204-16. https://doi.org/10.1111/1574-6941.12217
- Yuan Z, Yan W, Wen C, Zheng J, Yang N, Sun C. Enterotype identification and its influence on regulating the duodenum metabolism in chickens. Poult Sci 2020;99:1515-27. https://doi.org/10.1016/j.psj.2019.10.078
- Xu E, Yang H, Ren M, et al. Identification of enterotype and its effects on intestinal butyrate production in pigs. Animals (Basel) 2021;11:730. https://doi.org/10.3390/ani11030730
- Hay1 MC, Hinsu AT, Koringa PG, et al. Chicken caecal enterotypes in indigenous Kadaknath and commercial Cobb chicken lines are associated with Campylobacter abundance and influenced by farming practices. Res Sq 2023 Jul 11 [ePub]. https://doi.org/10.21203/rs.3.rs-2381640/v1
- Wen C, Gou Q, Gu S, et al. The cecal ecosystem is a great contributor to intramuscular fat deposition in broilers. Poult Sci 2023;102:102568. https://doi.org/10.1016/j.psj.2023.102568
- Lu D, Tiezzi F, Schillebeeckx C, et al. Host contributes to longitudinal diversity of fecal microbiota in swine selected for lean growth. Microbiome 2018;6:4. https://doi.org/10.1186/s40168-017-0384-1
- Li J, Powell JE, Guo J, et al. Two gut community enterotypes recur in diverse bumblebee species. Curr Biol 2015;25:R652-3. https://doi.org/10.1016/j.cub.2015.06.031
- Tang X, Zhang L, Ren S, Zhao Y, Zhang Y. Temporal and geographic distribution of gut microbial enterotypes associated with host thermogenesis characteristics in plateau pikas. Microbiol Spectr 2023;11:e0002023. https://doi.org/10.1128/spectrum.00020-23
- Wang X, Tsai T, Deng F, et al. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome 2019;7:109. https://doi.org/10.1186/s40168-019-0721-7
- Costea PI, Hildebrand F, Arumugam M, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol 2018;3:8-16. https://doi.org/10.1038/s41564-017-0072-8
- Danzeisen JL, Calvert AJ, Noll SL, et al. Succession of the turkey gastrointestinal bacterial microbiome related to weight gain. PeerJ 2013;1:e237. https://doi.org/10.7717/peerj.237
- Ma L, Tao S, Song T, et al. Clostridium butyricum and carbohydrate active enzymes contribute to the reduced fat deposition in pigs. iMeta 2024;3:e160. https://doi.org/10.1002/imt2.160
- Zafar H, Saier MH Jr. Gut bacteroides species in health and disease. Gut Microbes 2021;13:1848158. https://doi.org/10.1080/19490976.2020.1848158
- Attwood G, Li D, Pacheco D, Tavendale M. Production of indolic compounds by rumen bacteria isolated from grazing ruminants. J Appl Microbiol 2006;100:1261-71. https://doi.org/10.1111/j.1365-2672.2006.02896.x
- Li J, Zhang L, Wu T, Li Y, Zhou X, Ruan Z. Indole-3-propionic acid improved the intestinal barrier by enhancing epithelial barrier and mucus barrier. J Agric Food Chem 2021;69:1487-95. https://doi.org/10.1021/acs.jafc.0c05205
- Chen L, Zhang W, Hua J, et al. Dysregulation of intestinal health by environmental pollutants: involvement of the estrogen receptor and aryl hydrocarbon receptor. Environ Sci Technol 2018;52:2323-30. https://doi.org/10.1021/acs.est.7b06322
- Huang S, Ji S, Yan H, et al. The day-to-day stability of the ruminal and fecal microbiota in lactating dairy cows. Microbiologyopen 2020;9:e990. https://doi.org/10.1002/mbo3.990
- Miyake S, Ngugi DK, Stingl U. Phylogenetic diversity distribution and cophylogeny of giant bacteria (Epulopiscium) with their surgeonfish hosts in the red sea. Front Microbiol 2016;7:285. https://doi.org/10.3389/fmicb.2016.00285
- Zhang Q, Kim JH, Kim Y, Kim W. Lactococcus chungangensis CAU 28 alleviates diet-induced obesity and adipose tissue metabolism in vitro and in mice fed a high-fat diet. J Dairy Sci 2020;103:9803-14. https://doi.org/10.3168/jds.2020-18681