DOI QR코드

DOI QR Code

Effects of wilting on silage quality: a meta-analysis

  • Muhammad Ridla (Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University) ;
  • Hajrian Rizqi Albarki (Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University) ;
  • Sazli Tutur Risyahadi (Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University) ;
  • Sukarman Sukarman (National Research and Innovation Agency (BRIN))
  • Received : 2023.10.07
  • Accepted : 2023.12.10
  • Published : 2024.07.01

Abstract

Objective: This meta-analysis aimed to evaluate the impact of wilted and unwilted silage on various parameters, such as nutrient content, fermentation quality, bacterial populations, and digestibility. Methods: Thirty-six studies from Scopus were included in the database and analyzed using a random effects model in OpenMEE software. The studies were grouped into two categories: wilting silage (experiment group) and non-wilting silage (control group). Publication bias was assessed using a fail-safe number. Results: The results showed that wilting before ensiling significantly increased the levels of dry matter, water-soluble carbohydrates, neutral detergent fiber, and acid detergent fiber, compared to non-wilting silage (p<0.05). However, wilting significantly decreased dry matter losses, lactic acid, acetic acid, butyric acid, and ammonia levels (p<0.05). The pH, crude protein, and ash contents remained unaffected by the wilting process. Additionally, the meta-analysis revealed no significant differences in bacterial populations, including lactic acid bacteria, yeast, and aerobic bacteria, or in vitro dry matter digestibility between the two groups (p>0.05). Conclusion: Wilting before ensiling significantly improved silage quality by increasing dry matter and water-soluble carbohydrates, as well as reducing dry matter losses, butyric acid, and ammonia. Importantly, wilting did not have a significant impact on pH, crude protein, or in vitro dry matter digestibility.

Keywords

Acknowledgement

The authors received no financial support for this article.

References

  1. Borreani G, Tabacco E, Schmidt RJ, Holmes BJ, Muck RE. Silage review: factors affecting dry matter and quality losses in silages. J Dairy Sci 2018;101:3952-79. https://doi.org/10.3168/jds.2017-13837
  2. Ribas WFG, Moncao FP, Junior VRR, et al. Effect of wilting time and enzymatic-bacterial inoculant on the fermentative profile, aerobic stability and nutritional value of BRS capiacu grass silage. R Bras Zootec 2021;50:e20200207. https://doi.org/10.37496/rbz5020200207
  3. Liu Q, Zhang J, Shi S, Sun Q. The effects of wilting and storage temperatures on the fermentation quality and aerobic stability of stylo silage. Anim Sci J 2011;82:549-53. https://doi.org/10.1111/j.1740-0929.2011.00873.x
  4. Tao L, Zhou H, Zhang N, et al. Effects of different source additives and wilt conditions on the pH value, aerobic stability, and carbohydrate and protein fractions of alfalfa silage. Anim Sci J 2017;88:99-106. https://doi.org/10.1111/asj.12599
  5. Kim JG, Chung ES, Seo S, Ham JS, Kang WS, Kim DA. Effects of maturity at harvest and wilting days on quality of round baled rye silage. Asian-Australas J Anim Sci 2001;14:1233-7. https://doi.org/10.5713/ajas.2001.1233
  6. Nishino N, Li Y, Wang C, Parvin S. Effects of wilting and molasses addition on fermentation and bacterial community in guinea grass silage. Lett Appl Microbiol 2012;54:175-81. https://doi.org/10.1111/j.1472-765X.2011.03191.x
  7. Zheng M, Niu D, Zuo S, Mao P, Meng L, Xu C. The effect of cultivar, wilting and storage period on fermentation and the clostridial community of alfalfa silage. Ital J Anim Sci 2018;17:336-46. https://doi.org/10.1080/1828051X.2017.1364984
  8. Wan JC, Xie KY, Wang YX, Liu L, Yu Z, Wang B. Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage. Anim Biosci 2021;34:56-65. https://doi.org/10.5713/ajas.20.0079
  9. Ertekin I, Atis I, Aygun YZ, Yilmaz S, Kizilsimsek M. Effects of different nitrogen doses and cultivars on fermentation quality and nutritive value of Italian ryegrass (Lolium multiflorum Lam.) silages. Anim Biosci 2022;35:39-46. https://doi.org/10.5713/ab.21.0113
  10. Ridla M, Uchida S. Comparative study on the effects of combined treatments of lactic acid bacteria and cellulases on the fermentation characteristic and chemical composition of rhodesgrass (Chloris gayana Kunth.) and Italian ryegrass (Lolium multiflorum Lam.) silages. Asian-Australas J Anim Sci 1999;12:525-30. https://doi.org/10.5713/ajas.1999.525
  11. Cheung MWL, Vijayakumar R. A guide to conducting a meta-analysis. Neuropsychol Rev 2016;26:121-8. https://doi.org/10.1007/s11065-016-9319-z
  12. Papakostidis C, Giannoudis PV. Meta-analysis: what have we learned?. Injury 2023;54(Suppl 3):S30-4. https://doi.org/10.1016/j.injury.2022.06.012
  13. Haidich AB. Meta-analysis in medical research. Hippokratia 2010;14(Suppl 1):29-37.
  14. Leung L. Validity, reliability, and generalizability in qualitative research. J Family Med Prim Care 2015;4:324-7. https://doi.org/10.4103/2249-4863.161306
  15. Risyahadi ST, Martin RSH, Qomariyah N, Suryahadi S, Sukria HA, Jayanegara A. Effects of dietary extrusion on rumen fermentation, nutrient digestibility, performance and milk composition of dairy cattle: a meta-analysis. Anim Biosci 2023;36:1546-57. https://doi.org/10.5713/ab.23.0012
  16. Cheung MWL, Vijayakumar R. A guide to conducting a meta-analysis. Neuropsychol Rev 2016;26:121-8. https://doi.org/10.1007/s11065-016-9319-z
  17. Sanchez-Meca J, Marin-Martinez F. Meta-analysis in psychological research. Int J Psychol Res 2010;3:150-62. https://doi.org/10.21500/20112084.860
  18. Rosenthal R. The file drawer problem and tolerance for null results. Psychol Bull 1979; 86:638-41. https://doi.org/10.1037/0033-2909.86.3.638
  19. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7:177-88. https://doi.org/10.1016/0197-2456(86)90046-2
  20. McDonald P, Henderson AR, Heron SJE. The biochemistry of silage. 2nd ed. Marlow, Bucks, UK: Chalcombe Publications; 1991. https://doi.org/10.1017/S0014479700023115
  21. Cole Diepersloot E, Pupo MR, Ghizzi LG, Heinzen C, Ferraretto LF. Effect of wilting and microbial inoculation on the fermentation profile, nutrient composition, and aerobic stability of Bermuda grass silage. Anim Feed Sci Technol 2022;290:115376. https://doi.org/10.1016/j.anifeedsci.2022.115376
  22. Dawson LER, Ferris CP, Steen RWJ, Gordon FJ, Kilpatrick DJ. The effects of wilting grass before ensiling on silage intake. Grass Forage Sci 1999;54:237-47. https://doi.org/10.1046/j.1365-2494.1999.00176.x
  23. Zhang YC, Wang XK, Li DX, Lin YL, Yang FY, Ni KK. Impact of wilting and additives on fermentation quality and carbohydrate composition of mulberry silage. Asian-Australas J Anim Sci 2020;33:254-63. https://doi.org/10.5713/ajas.18.0925
  24. Wilkinson JM. A laboratory evaluation of comfrey (Symphytum officinale L.) as a forage crop for ensilage. Anim Feed Sci Technol 2003;104:227-33. https://doi.org/10.1016/S0377-8401(02)00293-6
  25. Yahaya MS, Kawai M, Takahashi J, Matsuoka S. The effect of different moisture contents at ensiling on silo degradation and digestibility of structural carbohydrates of orchardgrass. Anim Feed Sci Technol 2002;101:127-33. https://doi.org/10.1016/S0377-8401(02)00080-9
  26. Tavares VB, Pinto JC, Evangelista AR, Figueiredo HCP, Avila CLS, de Lima RF. Effects of different compaction degrees, inclusion of absorbent additive and wilting on the chemical composition of tanzania grass silages. R Bras Zootec 2009;38:40-9. https://doi.org/10.1590/S1516-35982009000100006
  27. Hao J, Sun WT, Wu CR, et al. Fermentation quality, bacterial community, and aerobic stability of perennial recut Broussonetia papyrifera silage with different additives and wilting time. Fermentation 2022;8:262. https://doi.org/10.3390/fermentation8060262
  28. Chen R, Li M, Yang J, et al. Exploring the effect of wilting on fermentation profiles and microbial community structure during ensiling and air exposure of king grass silage. Front Microbiol 2022;13:971426. https://doi.org/10.3389/fmicb.2022.971426
  29. Li D, Ni K, Zhang Y, Lin Y, Yang F. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australas J Anim Sci 2019;32:665-74. https://doi.org/10.5713/ajas.18.0085
  30. Chen L, Guo G, Yuan X, Zhang J, Li J, Shao T. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau. J Sci Food Agric 2016;96:1678-85. https://doi.org/10.1002/jsfa.7271
  31. Santos MC, Kung L. Short communication: the effects of dry matter and length of storage on the composition and nutritive value of alfalfa silage. J Dairy Sci 2016;99:5466-9. https://doi.org/10.3168/jds.2016-10866
  32. Kung L, Shaver RD, Grant RJ, Schmidt RJ. Silage review: interpretation of chemical, microbial, and organoleptic components of silages. J Dairy Sci 2018;101:4020-33. https://doi.org/10.3168/jds.2017-13909
  33. Wang Y, He L, Xing Y, et al. Dynamics of bacterial community and fermentation quality during ensiling of wilted and unwilted Moringa oleifera leaf silage with or without lactic acid bacterial inoculants. mSphere 2019;4:e00341-19. https://doi.org/10.1128/msphere.00341-19
  34. Gomes ALM, Jacovaci FA, Bolson DC, Nussio LG, Jobim CC, Daniel JLP. Effects of light wilting and heterolactic inoculant on the formation of volatile organic compounds, fermentative losses and aerobic stability of oat silage. Anim Feed Sci Technol 2019;247:194-8. https://doi.org/10.1016/j.anifeedsci.2018.11.016
  35. McEniry J, Forristal PD, O'Kiely P. Factors influencing the conservation characteristics of baled and precision-chop grass silages. Irish J Agric Food Res 2011;50:175-88.
  36. Reppeto JL, Cajarville C, D'Alessandro J, Curbelo A, Soto C, Garin D. Effect of wilting and ensiling on ruminal degradability of temperate grass and legume mixtures. Anim Res 2005;54:73-80. https://doi.org/10.1051/animres:2005007
  37. Herrmann C, Heiermann M, Idler C. Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour Technol 2011;102:5153-61. https://doi.org/10.1016/j.biortech.2011.01.012
  38. Der Bedrosian MC, Nestor KE, Kung L. The effects of hybrid, maturity, and length of storage on the composition and nutritive value of corn silage. J Dairy Sci 2012;95:5115-26. https://doi.org/10.3168/jds.2011-4833
  39. Grant RJ, Ferraretto LF. Silage review: silage feeding management: silage characteristics and dairy cow feeding behavior. J Dairy Sci 2018;101:4111-21. https://doi.org/10.3168/jds.2017-13729
  40. Lyimo BJ, Mtengeti EJ, Urio NA, Demanisho EN. Effect of wilting, chopping length and different levels of maize bran on grass silage quality. Livest Res Rural Dev 2018;30:112.
  41. Yang F, Wang Y, Zhao S, Wang Y. Lactobacillus plantarum inoculants delay spoilage of high moisture alfalfa silages by regulating bacterial community composition. Front Microbiol 2020;11:1989. https://doi.org/10.3389/fmicb.2020.01989
  42. Bruning D, Gerlach K, Weis K, Sudekum KH. Effect of compaction, delayed sealing, and aerobic exposure on maize silage quality and on the formation of volatile organic compounds. Grass Forage Sci 2018;73:53-66. https://doi.org/10.1111/gfs.12288
  43. Wilkinson JM, Davies DR. The aerobic stability of silage: key findings and recent developments. Grass Forage Sci 2013;68:1-19. https://doi.org/10.1111/j.1365-2494.2012.00891.x
  44. Gomes RS, Almeida JCC, Carneiro JC, et al. Impacts of citrus pulp addition and wilting on elephant grass silage quality. Biosci J 2017;33:675-84. https://doi.org/10.14393/BJ-v33n3-33790
  45. McEniry J, Allen E, Murphy JD, O'Kiely P. Grass for biogas production: the impact of silage fermentation characteristics on methane yield in two contrasting biomethane potential test systems. Renew Energy 2014;63:524-30. https://doi.org/10.1016/j.renene.2013.09.052
  46. Dewhurst RJ, King PJ. Effects of extended wilting, shading and chemical additives on the fatty acids in laboratory grass silages. Grass Forage Sci 1998;53:219-24. https://doi.org/10.1046/j.1365-2494.1998.00130.x
  47. Mangan JL, Harrison FA, Vetter RL. Immunoreactive fraction 1 leaf protein and dry matter content during wilting and ensiling of ryegrass and alfalfa. J Dairy Sci 1991;74:2186-99. https://doi.org/10.3168/jds.S0022-0302(91)78392-6
  48. Haigh PM. The effect of wilting and silage additives on the fermentation of autumn made grass silage ensiled in bunkers on commercial farms in South Wales 1983-85. Grass Forage Sci 1988;43:337-45. https://doi.org/10.1111/j.1365-2494.1988.tb02159.x
  49. Anderson R. The effect of extended moist wilting and formic acid additive on the conservation as silage of two grasses differing in total nitrogen content. J Sci Food Agric 1983;34:808-18. https://doi.org/10.1002/jsfa.2740340808
  50. Franco RT, Buffiere P, Bayard R. Optimizing storage of a catch crop before biogas production: impact of ensiling and wilting under unsuitable weather conditions. Biomass Bioenergy 2017;100:84-91. https://doi.org/10.1016/j.biombioe.2017.03.017
  51. Narasimhalu P, Teller E, Vanbelle M, Foulon M, Dasnoy F. Apparent digestibility of nitrogen in rumen and whole tract of friesian cattle fed direct-cut and wilted grass silages. J Dairy Sci 1989;72:2055-61. https://doi.org/10.3168/jds.S0022-0302(89)79329-2
  52. Kamra DN, Singh R, Jakhmola RC, Srivatsa RVN. Effect of wilting and the additive straw, molasses and urea on the fermentation pattern of maize silage. Anim Feed Sci Technol 1983;9:185-96. https://doi.org/10.1016/0377-8401(83)90033-0
  53. Liu QH, Wu JX, Dong ZH, Wang SR, Shao T. Effects of overnight wilting and additives on the fatty acid profile, α-tocopherol and β-carotene of whole plant oat silages. Anim Feed Sci Technol 2020;260:114370. https://doi.org/10.1016/j.anifeedsci.2019.114370
  54. Weinberg ZG, Khanal P, Yildiz C, Chen Y, Arieli A. Effects of stage of maturity at harvest, wilting and LAB inoculant on aerobic stability of wheat silages. Anim Feed Sci Technol 2010;158:29-35. https://doi.org/10.1016/j.anifeedsci.2010.03.006
  55. Valente ME, Borreani G, Caredda S, Cavallarin L, Sulas L. Ensiling forage garland (Chrysanthemum coronarium L.) at two stages of maturity and at different wilting levels. Anim Feed Sci Technol 2003;108:181-90. https://doi.org/10.1016/S0377-8401(03)00123-8
  56. Williams CC, Froetschel MA, Ely LO, Amos HE. Effects of inoculation and wilting on the preservation and utilization of wheat forage. J Dairy Sci 1995;78:1755-65. https://doi.org/10.3168/jds.S0022-0302(95)76801-1
  57. Zou SY, Chen SK, Tang QY, et al. Effects of silage additives on quality and in vitro rumen fermentation characteristics of first season ratoon rice whole silage. Cao Ye Xue Bao 2021;30:122-32.
  58. Oliveira AC, Garcia R, Pires AJV, et al. Elephant grass silages with or without wilting, with cassava meal in silage production. Rev Bras Saude Prod Anim 2017;18:417-29. https://doi.org/10.1590/S1519-99402017000300002
  59. Haigh PM, Parker JWG. Effect of silage additives and wilting on silage fermentation, digestibility and intake, and on live weight change of young cattle. Grass Forage Sci 1985;40:429-36. https://doi.org/10.1111/j.1365-2494.1985.tb01774.x
  60. Hartinger T, Gresner N, Sudekum KH. Effect of wilting intensity, dry matter content and sugar addition on nitrogen fractions in lucerne silages. Agriculture 2019;9:11. https://doi.org/10.3390/agriculture9010011
  61. Nishino N, Touno E. Ensiling characteristics and aerobic stability of direct-cut and wilted grass silages inoculated with Lactobacillus casei or Lactobacillus buchneri. J Sci Food Agric 2005;85:1882-8. https://doi.org/10.1002/jsfa.2189
  62. Wahyono T, Sasongko WT, Indriatama WM, et al. Influence of different variety and wilting treatment on the nutritive value of whole plant sorghum silage. Adv Anim Vet Sci 2022; 10:1649-58. https://doi.org/10.17582/journal.aavs/2022/10.7.1649.1658
  63. Gordon FJ, Dawson LER, Ferris CP, Steen RWJ, Kilpatrick DJ. The influence of wilting and forage additive type on the energy utilisation of grass silage by growing cattle. Anim Feed Sci Technol 1999;79:15-27. https://doi.org/10.1016/S0377-8401(99)00013-9
  64. Rondahl T, Bertilsson J, Martinsson K. Effects of maturity stage, wilting and acid treatment on crude protein fractions and chemical composition of whole crop pea silages (Pisum sativum L.). Anim Feed Sci Technol 2011;163:11-9. https://doi.org/10.1016/j.anifeedsci.2010.09.017
  65. Cavallarin L, Antoniazzi S, Borreani G, Tabacco E. Effects of wilting and mechanical conditioning on proteolysis in sainfoin (Onobrychis viciifolia Scop) wilted herbage and silage. J Sci Food Agric 2005;85:831-8. https://doi.org/10.1002/jsfa.2022