Acknowledgement
This research was funded by National Natural Science Foundation of China, grant number 32160774, the Science and Technology Development Plan of Jilin Province of China, grant number YDZ J202203C G ZH 037, Jilin Science and Technology Development Plan, grant number 20200402053 NC, Yanbian University School-Enterprise Cooperation Project, grant number Yanda Kehezi (2019) No.1 and National Key R&D Program of China 2021YFD1200400.
References
- Hoehne A, Nuernberg G, Kuehn C, Nuernberg K. Relationships between intramuscular fat content, selected carcass traits, and fatty acid profile in bulls using a F2-population. Meat Sci 2012;90:629-35. https://doi.org/10.1016/j.meatsci.2011.10.005
- Stewart SM, Gardner GE, Mcgilchrist P, et al. Prediction of consumer palatability in beef using visual marbling scores and chemical intramuscular fat percentage. Meat Sci 2020;181:108322. https://doi.org/10.1016/j.meatsci.2020.108322
- Baik M, Kang HJ, Park SJ, et al. Triennial growth and development symposium: molecular mechanisms related to bovine intramuscular fat deposition in the longissimus muscle. J Anim Sci 2017;95:2284-303. https://doi.org/10.2527/jas.2016.1160
- Yan CG, Wang Y, Piao SZ, Piao XX, Piao HL, Li WB. Study on the beef quality traits of Yanbian cattle. J Yellow Cattle Sci 2004;30:5-7.
- Dani C, Smith AG, Dessolin S, et al. Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 1997;110:1279-85. https://doi.org/10.1242/jcs.110.11.1279
- Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol 2013;92:229-36. https://doi.org/10.1016/j.ejcb.2013.06.001
- Mota de Sa P, Richard AJ, Hang H, Stephens JM. Transcriptional regulation of adipogenesis. Compr Physiol 2017;7:635-74. https://doi.org/10.1002/cphy.c160022
- Wu Z, Rosen ED, Brun R, et al. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 1999;3:151-8. https://doi.org/10.1016/s1097-2765(00)80306-8
- Liu KS, Tong H, Li TP, Wang XD, Chen YJ. Research progress in molecular biology related quantitative methods of MicroRNA. Am J Transl Res 2020;12:3198-211.
- Olena AF, Patton JG. Genomic organization of microRNAs. J Cell Physiol 2010;222:540-5. https://doi.org/10.1002/jcp.21993
- Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004;279:52361-5. https://doi.org/10.1074/jbc.c400438200
- Xu H, Shao J, Fang J, et al. miR-381Targets KCTD15 to regulate bovine preadipocyte differentiation in vitro. Horm Metab Res 2021;53:63-70. https://doi.org/10.1055/a-1276-1602
- Ma XY, Wei DW, Cheng G, et al. Bta-miR-130a/b regulates preadipocyte differentiation by targeting PPARG and CYP2U1 in beef cattle. Mol Cell Probes 2018;42:10-7. https://doi.org/10.1016/j.mcp.2018.10.002
- Chen L, Chen YW, Zhang S, et al. MiR-540 as a novel adipogenic inhibitor impairs adipogenesis via suppression of PPARγ. J Cell Biochem 2015;116:969-76. https://doi.org/10.1002/jcb.25050
- Xia GJ. Screening of candidate genes associated to meat quality traits of Yanbian yellow cattle by a combination of miRNA and functional genes transcriptome [doctoral dissertation]. Yanji, China: Yanbian University; 2014.
- Jin WW, Grant JR, Stothard P, Moore SS, Guan LL. Characterization of bovine miRNAs by sequencing and bioinformatics analysis. BMC Mol Biol 2009;10:90. https://doi.org/10.1186/1471-2199-10-90
- Muroya S, Taniguchi M, Shibata M, et al. Profiling of differentially expressed microRNA and the bioinformatic target gene analyses in bovine fast- and slow-type muscles by massively parallel sequencing. J Anim Sci 2013;91:90-130. https://doi.org/10.2527/jas.2012-5371
- Zhang WW, Sun XF, Tong HL, et al. Effect of differentiation on microRNA expression in bovine skeletal muscle satellite cells by deep sequencing. Cell Mol Biol Lett 2016;21:8. https://doi.org/10.1186/s11658-016-0009-x
- Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol 2012;4:a008417. https://doi.org/10.1101/cshperspect.a008417
- Xi FX, Wei CS, Xu YT, et al. MicroRNA-214-3p targeting Ctnnb1 promotes 3T3-L1 preadipocyte diferentiation by interfering with the Wnt/β-Catenin signaling pathway. Int J Mol Sci 2019;20:1816. https://doi.org/10.3390/ijms20081816
- Sun GR, Li F, Ma XF, et al. gga-miRNA-18b-3p inhibits intramuscular adipocytes differentiation in chicken by targeting the ACOT13 gene. Cells 2019;8:556. https://doi.org/10.3390/cells8060556
- Li B, Huang XY, Yang C, et al. miR-27a regulates sheep adipocyte differentiation by targeting CPT1B gene. Animals (Basel) 2021;12:28. https://doi.org/10.3390/ani12010028
- Zhang Z, Gao Y, Xu MQ, et al. miR-181a regulate porcine preadipocyte differentiation by targeting TGFBR1. Gene 2019;681:45-51. https://doi.org/10.1016/j.gene.2018.09.046
- Yin CG, Shao J, Yin BZ, Jiao S, Xia GJ. Effect of castration on fatty deposition and the expression of related Genesin Yanbian yellow cattle (in Chinese with English abstract). J Northeast Agric Sci 2019;44:44-8.
- Hubler TR, Scammell JG. Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids. Cell Stress Chaperones 2004;9:243-52. https://doi.org/10.1379/csc-32r.1
- Stechschulte LA, Qiu B, Warrier M, et al. FKBP51 null mice are resistant to diet-induced obesity and the PPARγ agonist rosiglitazone. Endocrinology 2016;157:3888-900. https://doi.org/10.1210/en.2015-1996
- Stechschulte LA, Sanchez ER. FKBP51-a selective modulator of glucocorticoid and androgen sensitivity. Curr Opin Pharmacol 2011;11:332-7. https://doi.org/10.1016/j.coph.2011.04.012
- Han JB, Wang YG. mTORC1 signaling in hepatic lipid metabolism. Protein Cell 2018;9:145-51. https://doi.org/10.1007/s13238-017-0409-3
- Yang ZF, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 2009;335:1-32. https://doi.org/10.1007/978-3-642-00302-8_1
- Huang YJ, Xie LS. mTOR signal pathway research progress in nutrition environment energy metabolism (in Chinese with English abstract). Chin J Clin Res 2020;33:244-8.