Study of Meniscus Formation in a Double Layer Slot Die Head Using CFD

CFD를 이용한 Double Layer 슬롯 다이 헤드의 메니스커스 형성 연구

  • Gieun Kim (School of Electrical, Electronic & Communication Engineering, Korea University of Technology and Education) ;
  • Jongwoon Park (School of Electrical, Electronic & Communication Engineering, Korea University of Technology and Education)
  • 김기은 (한국기술교육대학교 전기.전자.통신공학부) ;
  • 박종운 (한국기술교육대학교 전기.전자.통신공학부)
  • Received : 2024.05.28
  • Accepted : 2024.06.21
  • Published : 2024.06.30

Abstract

Using a computational fluid dynamics(CFD) simulation tool, we have provided a coating guideline for slot-die coating with a double layer slot die head. We have analyzed the fluid dynamics in terms of the coating speed, flow rate ratio, and viscosity ratio, which are critical for the stability of coating meniscus. We have identified the common coating defects such as break-up, air entrainment, and leakage by varying the coating speeds. The flow rate ratio is the critical parameter determining the wet film thickness of the top and bottom layers. It is shown that when the flow rate ratio exceeds or equals 1.8, air entrainment occurs due to insufficient hydraulic pressure in the bottom layer, even though the total flow rate remains constant. Furthermore, we have found that the flow of the bottom layer is significantly affected by the viscosity of top layer. The viscosity ratio of 4 or higher obstructs the flow of the bottom layer due to the increased hydraulic resistance, resulting in leakage. Finally, we have demonstrated that as the viscosity ratio increases from 0.1 to 10, the maximum coating speed rises from 0.4 mm/s to 1.6 mm/s, and the minimum wet film thickness decreases from 800 ㎛ to 200 ㎛.

Keywords

Acknowledgement

This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004).

References

  1. R. Shimotsu, T. Takumi, and V. Vohra, "All solution-processed micro-structured flexible electrodes for low-cost light-emitting pressure sensors fabrication," Sci Rep, vol. 7, no. 1, p. 6921, Jul. 2017, doi: 10.1038/s41598-017-07284-8. 
  2. M. M. Salleh, T. Hasnan, T. Azis, S. Sepeai, and M. Yahaya, "Fabrication of organic light emitting diodes (oleds) for flat panel displays," BIMIPA, vol. 17, no. 3, pp. 9-14, 2007. 
  3. D. K. Dubey, M. Singh, S. Sahoo, and J. -H. Jou, "Simple-structured efficient white organic light emitting diode via solution process," Microelectronics Reliability, vol. 83, pp. 293-296, Apr. 2018, doi: 10.1016/j.microrel.2017.07.076. 
  4. X.-L. Trinh and H.-C. Kim, "Fully solution-processed perovskite solar cells fabricated by lamination process with silver nanoparticle film as top electrode," Energy Reports, vol. 6, pp. 1297-1303, Nov. 2020, doi: 10.1016/j.egyr.2020.04.037. 
  5. M.-J. Kim et al., "Facile fabrication of solution-processed solid-electrolytes for high-energy-density all-solid-state-batteries by enhanced interfacial contact," Sci Rep, vol. 10, no. 1, p. 11923, Jul. 2020, doi: 10.1038/s41598-020-68885-4. 
  6. R. Wang et al., "Slot-die coating of sol-gel-based organic-inorganic nanohybrid dielectric layers for flexible and large-area organic thin film transistors," Applied Surface Science, vol. 529, p. 147198, Nov. 2020, doi: 10.1016/j.apsusc.2020.147198. 
  7. A. Sandstrom, H. F. Dam, F. C. Krebs, and L. Edman, "Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating," Nature communications, vol. 3, no. 1, p. 1002, 2012. 
  8. M. S. Jung, G. E. Kim, J. P. Na, and J. W. Park, "Development of Intermittent Coating Process Using Roll-to-roll Slot-die Coater," Journal of the Semiconductor & Display Technology, vol. 22, no. 4, pp. 32-37, 2023. 
  9. K.-J. Choi, J.-Y. Lee, J. Park, and Y.-S. Seo, "Multilayer slot-die coating of large-area organic light-emitting diodes," Organic Electronics, vol. 26, pp. 66-74, Nov. 2015, doi: 10.1016/j.orgel.2015.07.025. 
  10. L. Merklein et al., "Multilayer OLEDs with four slot die-coated layers," J Coat Technol Res, vol. 16, no. 6, pp. 1643-1652, Nov. 2019, doi: 10.1007/s11998-019-00225-2. 
  11. T. T. Larsen-Olsen et al., "Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water," Solar Energy Materials and Solar Cells, vol. 97, pp. 22-27, Feb. 2012, doi: 10.1016/j.solmat.2011.08.026. 
  12. L.-C. Chen et al., "Improvement of lithium-ion battery performance using a two-layered cathode by simultaneous slot-die coating," Journal of Energy Storage, vol. 5, pp. 156-162, Feb. 2016, doi: 10.1016/j.est.2015.12.008. 
  13. N. D. Katopodes, Free-surface flow: computational methods. Butterworth-Heinemann, 2018. 
  14. M. H. Zawawi et al., "A review: Fundamentals of computational fluid dynamics (CFD)," presented at the GREEN DESIGN AND MANUFACTURE: ADVANCED AND EMERGING APPLICATIONS: Proceedings of the 4th International Conference on Green Design and Manufacture 2018, Ho Chi Minh, Vietnam, 2018, p. 020252. doi: 10.1063/1.5066893. 
  15. K. Y. Lee, L. D. Liu, and L. Ta-Jo, "Minimum wet thickness in extrusion slot coating," Chemical Engineering Science, vol. 47, no. 7, pp. 1703-1713, 1992, doi: 10.1016/0009-2509(92)85018-7. 
  16. H. S. Ji, W. G. Ahn, I. Kwon, J. Nam, and H. W. Jung, "Operability coating window of dual-layer slot coating process using viscocapillary model." Chemical Engineering Science, vol. 143, pp. 122-129, 2016, doi: 10.1016/j.ces.2015.12.016 
  17. S. P. Sutera and R. Skalak, "The History of Poiseuille's Law," Annu. Rev. Fluid Mech., vol. 25, no. 1, pp. 1-20, Jan. 1993, doi: 10.1146/annurev.fl.25.010193.000245.