Ballistocardiographical Heart Rate Measurement Using Head Mounted 6-axis Accelerometer

머리 착용형 6축 가속도계를 사용한 심탄도 심박수 측정

  • Jinman Kim (Korea Electronics Association) ;
  • Joongjin Kook (Dept. of Information Security Engineering, Sangmyung University)
  • 김진만 (한국전자정보통신산업진흥회) ;
  • 국중진 (상명대학교 정보보안공학과)
  • Received : 2024.05.15
  • Accepted : 2024.06.21
  • Published : 2024.06.30

Abstract

Recently, wearable virtual reality devices are widely used. These instruments include a 3-axis accelerometer. User's heart rate information in virtual reality contents can be useful for measuring user experience. In this paper, we propose a method to measure the heart rate through a 3-axis accelerometer based on the principle of ballistocardiography without additional sensors. The angular velocity was successively measured in a time series by the 3-axis accelerometer mounted to the head. The frequency of the maximum magnitude is determined as the heart rate through frequency transform and band pass filtering of the time series signal. For verification, the heart rate calculated from photoplethysmography sensors acquired at the same time was compared as ground-truth. In the virtual reality, the user's heart rate information can be extracted without additional heart rate sensor, and the emotional state and fatigue can be measured.

Keywords

References

  1. Mehreen, A., Anwar, S. M., Haseeb, M., Majid, M., & Ullah, M. O. (2019). A hybrid scheme for drowsiness detection using wearable sensors. IEEE Sensors Journal, 19(13), 5119-5126.
  2. Campbell, A., Choudhury, T., Hu, S., Lu, H., Mukerjee, M. K., Rabbi, M. and Raizada, R. D. NeuroPhone: brain-mobile phone interface using a wireless EEG headset. Proceedings of the second ACM SIGCOMM workshop on Networking, systems, and applications on mobile handhelds, 2010, 3-8.
  3. Thammasan, Nattapong, Ken-ichi Fukui, and Masayuki Numao. "Multimodal fusion of EEG and musical features in music-emotion recognition." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31. No. 1. 2017.
  4. Hernandez J, Li Y, Rehg JM, Picard RW. Bioglass: Physiological parameter estimation using a head-mounted wearable device. Wireless Mobile Communication and Healthcare (Mobihealth), 2014 EAI 4th International Conference on: IEEE; 2014 Nov;Pages 55-58 DOI:10.1109/MOBIHEALTH.2014.7015908.
  5. Da He D, Winokur ES, Sodini CG. An ear-worn vital signs monitor. IEEE Transactions on Biomedical Engineering 2015;62(11):2547-2552.
  6. Jinsoo, C., (2013) Portable Electrocardiograph and Smart Device-based Heart Health Monitoring and Risk Notification System. Journal of the Semiconductor & Display Technology, 12(2), 73-78
  7. GUBNER RS, RODSTEIN M, UNGERLEIDER HE. Ballistocardiography; an appraisal of technic, physiologic principles, and clinical value. Circulation 1953 Feb;7(2):268-286.
  8. Pinheiro E, Postolache O, Girao P. Theory and developments in an unobtrusive cardiovascular system representation: ballistocardiography. Open Biomed Eng J 2010;4:201-216.
  9. Tamura T, Maeda Y, Sekine M, Yoshida M. Wearable photoplethysmographic sensors-past and present. Electronics 2014;3(2):282-302.
  10. Reyes-Gonzalez, Luis, Luis Rodriguez-Cobo, and Jose-Miguel Lopez-Higuera. "Comparison of Ballistocardiogram Processing Methods Based on Fiber Specklegram Sensors." IEEE Sensors Journal 22.21 (2022): 20524-20530.
  11. Gjerde, S., Steffensen, T., Vestad, H., & Steinert, M. (2022, September). Windows to the sole: Prototyping soft sensors for wearable ballistocardiography. In2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)(pp. 1-4). IEEE.
  12. Zhao, H., Zhu, G., Liu, F., Liu, X., Yuan, J., & Zhou, X. (2022, December). Non-Invasive Optical Fiber Sensing Vital Signs Monitoring Based on Envelope Extraction BCG Data Processing. In2022 IEEE 7th Optoelectronics Global Conference (OGC)(pp. 124-127). IEEE.
  13. Watanabe, K., Kurihara, Y., Kobayashi, K., & Suzuki, K. (2020). Ballistocardiogram (BCG) measurement by a differential pressure sensor.IEEE Sensors Journal,21(6), 8583-8592.
  14. Hytonen, R., Tshala, A., Schreier, J., Holopainen, M., Forsman, A., Oksanen, M., ... & Jahne-Raden, N. (2020, December). Analysing ballistocardiography for pervasive healthcare. In2020 16th International Conference on Mobility, Sensing and Networking (MSN)(pp. 86-91). IEEE.
  15. Zhang, L., Cai, P., Deng, Y., Lin, J., Chu, Z., Shi, Q., ... & Wang, B. (2021). Ballistocardiography to identify high left atrial pressure in patients with heart failure. Annals of Palliative Medicine,10(7), 8155168-8158168.
  16. Yoshioka, Mototaka, and Souksakhone Bounyong. "Analysis of pulse transit time derived from imaging photoplethysmography and microwave sensor-based ballistocardiography." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020.
  17. TPP320 [Internet]. Available from: http://www.laxtha-eshop.kr/goods/view?no=6.
  18. Weinstein S, Ebert P. Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE transactions on Communication Technology 1971;19(5):628-634.