DOI QR코드

DOI QR Code

Antioxidant activity of 3,5-dicaffeoyl-epi-quinic acid (DEQA) from the halophyte Atriplex gmelinii

  • Hojun Kim (Division of Convergence on Marine Science, Korea Maritime & Ocean University) ;
  • Chang-Suk Kong (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University) ;
  • Youngwan Seo (Division of Convergence on Marine Science, Korea Maritime & Ocean University)
  • 투고 : 2024.03.25
  • 심사 : 2024.04.26
  • 발행 : 2024.04.30

초록

In this study, the antioxidizing effect of 2,3-dicaffeoyl-epi-quinic acid (DEQA) was investigated. The antioxidant activity was evaluated by measuring the scavenging effect on DPPH radical and peroxynitrite and the reducing power on ferric ion. DEQA showed a scavenging effect and reducing power comparable to vitamin C used as a positive control. Also, DEQA effectively inhibited production of intracellular reactive oxygen species (ROS) in HT-1080 cells, showing the scavenging ratio of 43.8% even at 10 µM concentration of DEQA after 2 hours in HT-1080 treated with H2O2. In addition to this, DEQA inhibited the production of nitric oxide (NO) very effectively in Raw 264.7 cells. The above results suggest that DEQA has the potential to be developed as a natural antioxidant.

키워드

과제정보

This study is outcome of the Basic Science Research Program (No. 2019R1F1A1059325 and 2022R1F1A1065328) conducted with the support of the National Research Foundation of Korea, funded by the Ministry of Science and ICT.

참고문헌

  1. Y. M. Lee, J. H. Bae, H. Y. Jung, J. H. Kim, D. S. Park, "Antioxidant activity in water and methanol extracts from Korean edible wild plants", Journal of the Korean Society of Food Science and Nutrition, Vol.40, No.1, pp. 29-36, (2011). https://doi.org/10.3746/jkfn.2011.40.1.029
  2. J. H. Lee, J. S. Park, "Antioxidant effect of traditional food ingredient", Journal of the Korea Convergence Society, Vol.11, No.2, pp. 309-314, (2020).
  3. L. Fridorich, "The biology of oxygen radicals", Science, Vol.201, No.4359, pp. 875-881, (1978). https://doi.org/10.1126/science.210504
  4. D. Dreher, F. Junod, "Role of oxygen free radicals in cancer development", European Journal of Cancer, Vol.32, No.1, pp. 30-38, (1996). https://doi.org/10.1016/0959-8049(95)00531-5
  5. L.-O. Klotz, P. Schroeder, H. Sies, "Peroxynitrite signaling: receptor tyrosine kinases and activation of stress responsive pathways", Free Radical Biology and Medicine, Vol.33, No.6, pp. 737-743, (2002). https://doi.org/10.1016/S0891-5849(02)00892-4
  6. J. S. Beckman, W. H. Koppenol, "Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly", American Journal of Physiology, Vol.271, No.5, pp. C1424-C1437, (1996).
  7. L. Virag, E. Szabo, P. Gergely, C. Szabo, "Peroxynitrite induced cytotoxicity: mechanism and opportunities for intervention", Toxicology Letters, Vol.140-141, pp. 113-124, (2003). https://doi.org/10.1016/S0378-4274(02)00508-8
  8. P. Pacher, J. S. Beckman, L. Liaudet, "Nitric Oxide and Peroxynitrite in Health and Disease", Physiological Reviews, Vol.87, No.1, pp. 315-424, (2007). https://doi.org/10.1152/physrev.00029.2006
  9. R. Ksouri, W. Megdiche, H. Falleh, N. Trabelsi, M. Boulaaba, A. Smaoui, C. Abdelly, "Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes", Comptes Rendus Biologies, Vol.331, No.11, pp. 865-873, (2008). https://doi.org/10.1016/j.crvi.2008.07.024
  10. A. K. Paridaa, A. B. Das, "Salt tolerance and salinity effects on plants: a review", Ecotoxicology and Environmental Safety, Vol.60, No.3, pp. 324-349 (2005). https://doi.org/10.1016/j.ecoenv.2004.06.010
  11. R. Ksouri, H. Falleh, W. Megdiche, N. Trabelsi, B. Mhamdi, K. Chaieb, A. Bakrouf, C. Magne, C. Abdelly, "Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents", Food and Chemical Toxicology, Vol.47, No.8, pp. 2083-2209, (2009). https://doi.org/10.1016/j.fct.2009.05.040
  12. M. M. Jithesh, S. R. Prashanth, K. P. Sivaprakash, A. K. Parida, "Antioxidative response mechanisms in halophytes: their role in stress defence", Journal of Genetics, Vol.85, No.3, pp. 237-254, (2006). https://doi.org/10.1007/BF02935340
  13. K. B. Hamed, A. Castagna, E. Salem, A. Ranieri, C. Abdelly, "Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses", Plant Growth Regulation, Vol.53, No.3, pp. 185-194, (2007).
  14. J. J. Bae, H. S. Yoon, Y. S. Choo, S. S. Song, "The responses of antioxidative enzymes and salt tolerance of Atriplex gmelinii", The Korean Journal of Ecology, Vol.26, No.5, pp. 273-280, (2003). https://doi.org/10.5141/JEFB.2003.26.5.273
  15. H. Jeong, H. Kim, E. Ju, C. S. Kong, Y. Seo,"Antioxidant effect of the halophyte Atriplex gmelinii", Korean Society for Biotechnology and Bioengineering Journal, Vol.31, No.4, pp. 200-207, 2016. https://doi.org/10.7841/ksbbj.2016.31.4.200
  16. H. Jeong, H. Kim, E. Ju, S. G. Lee, C. S. Kong, Y. Seo, Antiinflammatory activity of solvent-partitioned fractions from Atriplex gmelinii C. A. Mey. in LPS-stimulated RAW 264.7 macrophages. Journal of Life Science, Vol.27, No.2, pp. 187-193, (2017). https://doi.org/10.5352/JLS.2017.27.2.187
  17. M. S. Blois, "Antioxidant determinations by the use of a stable free radical", Nature, Vol.181, No.4617, pp. 1199-1200, (1958). https://doi.org/10.1038/1811199a0
  18. N. W. Kooy, J. A. Royal, H. Ischiropoulos, J. S. Beckman, "Peroxynitrite mediated oxidation of dihydrorhodamine 123", Free Radical Biology and Medicine, Vol.16, No.2, pp. 149-156, (1994). https://doi.org/10.1016/0891-5849(94)90138-4
  19. M. Oyaizu,"Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine", Japanese Journal of Nutrition and Dietetics, Vol.44, No.6, pp. 307-315, (1986). https://doi.org/10.5264/eiyogakuzashi.44.307
  20. Y. Okimoto, A. Watanabe, E. Niki, T. Yamashita, N. Noguchi, "A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes", FEBS Letters, Vol.474, No.2-3, 137-140, (2000). https://doi.org/10.1016/S0014-5793(00)01587-8
  21. B. Nataliya, N. Andrei, "A spectrophotometric assay for nitrate in an excess of nitrite", Nitric Oxide, Vol.13, No.2, pp. 93-97, (2005). https://doi.org/10.1016/j.niox.2005.05.002
  22. M. Cheon, T. Yoon, G. Choi, S. Kim, A. Lee, B. Moon, B. Choo, H. Kim, "Comparative study of extracts from rhubarb on inflammatory activity in RAW 264.7 cells", The Korean Journal of Medicinal Crop Science, Vol.17, No.2, pp. 109-114, (2009).
  23. M. P. Murphy, "Nitric oxide and cell death", Biochimica et Biophysica Acta, Vol.1411, No.2-3, pp. 401-14, (1999). https://doi.org/10.1016/S0005-2728(99)00029-8
  24. M. N. Clifford, I. B. Jaganath, I. A. Ludwig, A. Crozier, "Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity", Natural Product Reports, Vol.34, No.12, pp. 1391-1421, (2017). https://doi.org/10.1039/C7NP00030H
  25. A. A. Magana, N. Kamimura, A. Soumyanath, J. F. Stevens, C. S. Maier, "Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity", The Plant Journal, Vol.107, No.5, pp. 1299-1319, (2021). https://doi.org/10.1111/tpj.15390
  26. H. J. Kim, Y. S. Lee, "Identification of new dicaffeoylquinic acids from Chrysanthemum morifolium and their antioxidant activities", Planta Medica, Vol.71, No.9, pp. 871-876.
  27. S. Y. Nam, N. R. Han, S. Y. Rah, Y. Seo, H. M. Kim, H. J. Jeong, "Antiinflammatory effects of Artemisia scoparia and its active constituent, 3,5-dicaffeoylepi-quinic acid against activated mast cells", Immunopharmacology and Immunotoxicology, Vol.40, No.1, pp. 52-58, (2018). https://doi.org/10.1080/08923973.2017.1405438
  28. J. H. Oh, J. I. Lee, F. Karadeniz, Y. Seo, C. S. Kong, "3,5-Dicaffeoyl-epi-quinic acid isolated from edible halophyte Atriplex gmelinii inhibits adipogenesis via AMPK/MAPK pathway in 3T3-L1 adipocytes", Evidence-Based Complementary and Alternative Medicine, Vol.2018, pp. 8572571, (2018).
  29. J. H. Oh, F. Karadeniz, C. S. Kong, Y. Seo, "Antiphotoaging effect of 3,5-dicaffeoylepi-quinic acid against UVA-induced skin damage by protecting human dermal fibroblasts in vitro", International Journal of Molecular Sciences, Vol.21, No.20, pp. 7756, (2020).
  30. J. I. Lee, J. H. Kil, G. H. Yu, F. Karadeniz, J. H. Oh, Y. Seo, C. S. Kong, "3,5-Dicaffeoyl-epi-quinic acid inhibits the PMA-stimulated activation and expression of MMP-9 but not MMP-2 via downregulation of MAPK pathway", Zeitschrift Fur Naturforschung C-A Journal of Biosciences, Vol.75, No.3-4, pp. 113-120, (2020). https://doi.org/10.1515/znc-2019-0163
  31. F. Karadeniz, J. H. Oh, J. I. Lee, Y. Seo, C. S. Kong, "3,5-dicaffeoyl‑epi-quinic acid from Atriplex gmelinii enhances the osteoblast differentiation of bone marrow-derived human mesenchymal stromal cells via WnT/BMP signaling and suppresses adipocyte differentiation via AMPK activation", Phytomedicine, Vol.71, pp. 153225, (2020).
  32. J. H. Oh, F. Karadeniz, J. I. Lee, Y. Seo, C. S. Kong, "Protective effect of 3,5-dicaffeoyl-epi-quinic acid against UVB-induced photo-aging in human HaCaT keratinocytes", Molecular Medicine Reports, Vol.20, No.1, 763-770, (2019).
  33. J. H. Oh, J. I. Lee, F. Karadeniz, S. Y, Park, Y. Seo, C. S. Kong, "Antiphotoaging effects of 3,5-dicaffeoyl-epi-quinic acid via inhibition of matrix metalloproteinases in UVB-irradiated human keratinocytes", Evidence-Based Complementary and Alternative Medicine, Vol.2020, pp. 8949272, (2020)
  34. S. Hong, T. Joo, J. W. Jhoo, "Antioxidant and anti-inflammatory activities of 3,5-dicaffeoyl quinic acid isolated from Ligularia fischeri leaves", Food Science and Biotechnology, Vol.24, No.1, pp. 257-263, (2015). https://doi.org/10.1007/s10068-015-0034-y