Acknowledgement
이 논문은 2021년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2021S1A5A8065404)
References
- Z. Jaunmuktane, S. Mead, M. Ellis, J. D. F. Wadsworth, A. J. Nicoll, J. Kenny, F. Launchbury, J. Linehan, A. Richard-Loendt, A. S. Walker, P. Rudge, J. Collinge, S. Brandner, "Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy", Nature, Vol.525, No.7568 pp. 247, 2015.
- D. J. Selkoe, J. Hardy, "The amyloid hypothesis of Alzheimer's disease at 25 years", EMBO Molecular Medicine, Vol.8, No.6 pp. 595-608, (2016). https://doi.org/10.15252/emmm.201606210
- K. Govindpani, L. G. McNamara, N. R. Smith, C. Vinnakota, H. J. Waldvogel, R. L. Faul, A. Kwakowsky, "Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It?", Journal of clinical medicine, Vol.8, No.5 pp. 651, (2019).
- M. Brkic, et al, S. Balusu, E. V. Wonterghem, N. Gorle, I. Benilova, A. Kremer, I. V. Hove, L. Moons, B. D. Strooper, S .Kanazir, C. Libert, R. E. Vandenbroucke, "Amyloid β oligomers disrupt blood-CSF barrier integrity by activating matrix metalloproteinases", Journal of Neuroscience, Vol.35, No.37 pp. 12766-12778, (2015). https://doi.org/10.1523/JNEUROSCI.0006-15.2015
- Y. Chan, W. Chen, W. Wan, Y. Chen, Y. Li, C. Zhang, "Aβ1-42 oligomer induces alteration of tight junction scaffold proteins via RAGE-mediated autophagy in bEnd. 3 cells", Experimental cell research, Vol.369, No.2 pp. 266-274, (2018). https://doi.org/10.1016/j.yexcr.2018.05.025
- E. Frith, P. D. Loprinzi, "Physical activity is associated with higher cognitive function among adults at risk for Alzheimer's disease. Complementary therapies in medicine", Vol.36, pp. 46-49, (2018). https://doi.org/10.1016/j.ctim.2017.11.014
- S. H. Choi, E. Bylykbashi, Z. K. Chatila, S. W. Lee, B. Pulli, G. D. Clemenson, R. E. Tanzi, "Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model", Science, Vol.361, No.6406 eaan8821, (2018).
- M. Azimi, R. Gharakhanlou, N. Naghdi, D. Khodadadi, S. Heysieattalab, "Moderate treadmill exercise ameliorates amyloid-β -induced learning and memory impairment, possibly via increasing AMPK activity and up-regulation of the PGC-1α/FNDC5/BDNF pathway", Peptides, Vol.102, pp. 78-88, (2018). https://doi.org/10.1016/j.peptides.2017.12.027
- X. Zhang, Q. He, T. Huang, N. Zhao, F. Liang, B. Xu, X. Chen, T. Li, J. Bi, "Treadmill exercise decreases Aβ deposition and counteracts cognitive decline in APP/PS1 mice, possibly via hippocampal microglia modifications", Frontiers in aging neuroscience, Vol.11, pp. 78, (2019).
- L. Serra, R. Perri, L. Fadda, A. Padovani, S. Lorusso, C. Pettenati, G. A. Carlesimo, "Relationship between cognitive impairment and behavioural disturbances in Alzheimer's disease patients", Behavioural neurology, Vol.23, No.3 pp. 123-130, (2010). https://doi.org/10.1155/2010/528694
- M. S. Beeri, S. E. Leugrans, O. Delbono, D. A. Bennett, A. S. Buchman, "Sarcopenia is associated with incident Alzheimer's dementia, mild cognitive impairment, and cognitive decline", Journal of the American Geriatrics Society, Vol.69, No.7 pp. 1826-1835, (2021). https://doi.org/10.1111/jgs.17206
- C. M. Yuede, B. F. Timson, J. C. Hettinger, K. M. Yuede, H. M. Edwards, J. E. Lawson, S. D. Zimmerman, J. R. Cirrito, "Interactions between stress and physical activity on Alzheimer's disease pathology", Neurobiology of stress, Vol.8, pp. 158-171, (2018). https://doi.org/10.1016/j.ynstr.2018.02.004
- G. P. Cortese, A. Olin, K. O'Riordan, R. Hullinger, C. Burger, "Environmental enrichment improves hippocampal function in aged rats by enhancing learning and memory, LTP, and mGluR5-Homer1c activity", Neurobiology of aging, Vol.63, pp. 1-11, (2018). https://doi.org/10.1016/j.neurobiolaging.2017.11.004
- Clemenson, GD, Gage FH, Stark CE, Environmental Enrichment and Neuronal Plasticity, The Oxford Handbook of Developmental Neural Plasticity, (2018).
- Y. Selvi, H. S. Gergerlioglu, N. Akbaba, M. Oz, A. Kandeger, E. A. Demir, F. H. Yerlikaya, K. E. Nurullahoglu-Atalik, "Impact of enriched environment on production of tau, amyloid precursor protein and, amyloid-β peptide in high-fat and high-sucrose-fed rats", Acta neuropsychiatrica, Vol.29, No.5 pp. 291-298, (2017). https://doi.org/10.1017/neu.2016.63
- H. Xu, M. M. Rajsombath, P. Weikop, D. J. Selkoe, "Enriched environment enhances β-adrenergic signaling to prevent microglia inflammation by amyloidβ", EMBO molecular medicine, Vol.10, No.9 pp. e8931, (2018).
- J. Balthazar, N. M. Schowe, G. C. Cipolli, H. S. Buck, T. A. Viel, "Enriched Environment Significantly Reduced Senile Plaques in a Transgenic Mice Model of Alzheimer's Disease, Improving Memory", Frontiers in aging neuroscience, Vol.10, 288, (2018).
- H. S. Um, E. B. Kang, J. H. Koo, H. T. Kim, E. J. Kim, C. H. Yang, J. Y. Cho, "Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease", Neuroscience research, Vol.69, No.2 pp. 161-173, (2011). https://doi.org/10.1016/j.neures.2010.10.004
- S. Madiha, Z. Batool, S. Tabassum, L. Liaquat, S. Sadir, T. Perveen, S. Haider, "Therapeutic effects of Curcuma longa against rotenone-induced gross motor skill deficits in rats", Pakistan Journal of Zoology, Vol.50, No.4 pp. 1245-1256, (2018). https://doi.org/10.17582/journal.pjz/2018.50.4.1245.1256
- M. Mold, C. Linhart, J. Gomez-Ramirez, A. Villegas-Lanau, C. Exley, "Aluminum and amyloid-β in familial Alzheimer's disease", Journal of Alzheimer's Disease, Vol.73, No.4 pp. 1627-1635, (2020). https://doi.org/10.3233/JAD-191140
- A. M. Elfiky, A. A. Mahmoud, H. A. Elreedy, K. S. Ibrahim, M. A. Ghazy, "Quercetin stimulates the non- amyloidogenic pathway via activation of ADAM10 and ADAM17 gene expression in aluminum chloride-induced Alzheimer's disease rat model", Life Sciences, Vol.285, 119964, (2021).
- J. H. Jeong, D. H. Choi, J. K. Lee, J. Y. Cho, J. H. Jeong, D. H. Choi, J. Y. Cho, "Effect of Endurance Exercise and MitoQ Intake on Tau Hyperphosphorylation, Oxidative Stress, Antioxidant Modulating Factors, Mitochondrial Function, and Cognitive Function in Alcl3-Induced Alzheimer's Disease Animal Model", Exercise Science, Vol.30, No.3 pp. 396-406, (2021). https://doi.org/10.15857/ksep.2021.30.3.396
- M. Nakano, K. Kubota, S. Hashizume, E. Kobayashi, T. S. Chikenji, Y. Saito, M. Fujimiya, "An enriched environment prevents cognitive impairment in an Alzheimer's disease model by enhancing the secretion of exosomal microRNA-146a from the choroid plexus", Brain, Behavior, & Immunity-Health, Vol.9, 100149, (2020).
- D. Takagi, H. Hirano, Y. Watanabe, A. Edahiro, Y. Ohara, H. Yoshida, S. Hironaka, "Relationship between skeletal muscle mass and swallowing function in patients with Alzheimer's disease", Geriatrics & Gerontology International, Vol.17, No.3 pp. 402-409, (2017). https://doi.org/10.1111/ggi.12728
- Y. Ogawa, Y. Kaneko, T. Sato, S. Shimizu, H. Kanetaka, H. Hanyu, "Sarcopenia and muscle functions at various stages of Alzheimer disease", Frontiers in neurology, Vol.9, 710, (2018).
- C. H. Turkseven, B. Buyukakilli, E. Balli, D. Yetkin, M. E. Erdal, S. G. Yilmaz, L. Sahin, "Effects of Huperzin-A on the Beta-amyloid accumulation in the brain and skeletal muscle cells of a rat model for Alzheimer's disease", Life sciences, Vol.184, pp. 47-57, (2017). https://doi.org/10.1016/j.lfs.2017.07.012
- Y. Zhao, F. Shen, M. Gong, L. Jin, X. Ren, K.. Liu, J. Lu, "Lifelong treadmill training improves muscle function detected by a modified grip strength test during aging in BALB/c mice", Life sciences, Vol.251, 117603, (2020).
- Y. Luo, F. Niu, Z. Sun, W. Cao, X. Zhang, D. Guan, Y. Xu, "Altered expression of Aβ metabolism-associated molecules from d-galactose/AlCl3 induced mouse brain", Mechanisms of ageing and development, Vol.130, No,4 pp. 248-252, (2009). https://doi.org/10.1016/j.mad.2008.12.005
- J. B. oledo, P. Gopal, K. Raible, D. J. Irwin, J. Brettschneider, S. edor, J. Q rojanowski, "Pathological α-synuclein distribution in subjects with coincident Alzheimer's and Lewy body pathology", Acta neuropathologica, Vol.131, pp. 393-409, (2016). https://doi.org/10.1007/s00401-015-1526-9
- M. D. Sweeney, A. P. Sagare, B. V. Zlokovic, "Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders", Nature Reviews Neurology, Vol.14, No.3 pp. 133, (2018).
- Y. Yamazaki, M. Shinohara, M. Shinohara, A. Yamazaki, M. E. Murray, A. M. Liesinger, M. G. Heckman, E. R. Lesser, J. E. Parisi, R. C. Petersen, D. W. Dickson, T. Kanekiyo, G. Bu, "Selective loss of cortical endothelial tight junction proteins during Alzheimer's disease progression", Brain, Vol.142, No.4 pp. 1077-1092, (2019). https://doi.org/10.1093/brain/awz011
- H. Zetterberg, J. M. Schott, "Biomarkers for Alzheimer's disease beyond amyloid and tau", Nature medicine, Vol.25, No.2 pp. 201, 2019.
- H. Hourfar, F. Aliakbari, S. R. Aqdam, Z. Nayeri, H. Bardania, D. E. Otzen, D. Morshedi, "The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells", International Journal of Biological Macromolecules, Vol.229, pp. 305-320, (2023). https://doi.org/10.1016/j.ijbiomac.2022.12.134