DOI QR코드

DOI QR Code

Applicability evaluation of GIS-based erosion models for post-fire small watershed in the wildland-urban interface

WUI 산불 소유역에 대한 GIS 기반 침식모형의 적용성 평가

  • Shin, Seung Sook (Institute for Smart Infrastructure, Gangneung-Wonju National University) ;
  • Ahn, Seunghyo (Department of Smart Infrastructure Disaster Prevention, Gangneung-Wonju National University) ;
  • Song, Jinuk (Department of Biology, Gangneung-Wonju National University) ;
  • Chae, Guk Seok (Department of Civil Engineering, Gangneung-Wonju National University) ;
  • Park, Sang Deog (Department of Civil and Environmental Engineering, Gangneung-Wonju National University)
  • 신승숙 (강릉원주대학교 스마트인프라연구소) ;
  • 안승효 (강릉원주대학교 스마트인프라방재 학연협동과정) ;
  • 송진욱 (강릉원주대학교 생물학과) ;
  • 채국석 (강릉원주대학교 토목공학과) ;
  • 박상덕 (강릉원주대학교 건설환경공학과)
  • Received : 2024.04.05
  • Accepted : 2024.06.10
  • Published : 2024.06.30

Abstract

In April 2023, a wildfire broke out in Gangneung located in the east coast region due to the influence of the Yanggang-local wind. In this study, GIS-based RUSLE(Revised Universal Soil Loss Equation) and SEMMA (Soil Erosion Model for Mountain Areas) were used to evaluate the erosion rate due to vegetation recovery in a small watershed of the Gangneung WUI(Wildland-Urban Interface) fire. The small watershed of WUI fire has a low altitude range of 10-30 m and the average slope of 10.0±7.4° which corresponds to a gentle slope. The soil texture was loamy sand with a high organic content and the deep soil depth. As herbaceous layer regenerated profusely in the gully after the wildfire, the NDVI (Normalized Difference Vegetation Index) reached a maximum of 0.55. Simulation results of erosion rates showed that RUSLE ranged from 0.07-94.9 t/ha/storm and SEMMA ranged from 0.24-83.6 t/ha/storm. RUSLE overestimated the average erosion rate by 1.19-1.48 times compared to SEMMA. The erosion rates were estimated to be high in the middle slope where burned pine trees were widely distributed and the slope was steep and to be relatively low in the hollow below the gully where herbaceous layer recovers rapidly. SEMMA showed a rapid increase in erosion sensitivity under at certain vegetation covers with NDVI below 0.25 (Ic = 0.35) on post-fire hillslopes. Gentle slopes with high organic content and rapid recovery of natural vegetation had relatively low erosion rate compared to steep slopes. As subsequent infrastructure and human damages due to sediment disaster by heavy rain is anticipated in WUI fire areas, the research results may be used as basic data for targeted management and decision making on the implementation of emergency treatment after the wildfire.

2023년 4월에 양강지풍의 영향으로 영동지역에 위치한 강릉에 산불이 발생하였다. 본 연구에서는 강릉 WUI (Wlidland-Urban Interface) 산불 소유역을 대상으로 식생회복에 따른 침식률을 평가하고자, GIS 기반의 RUSLE (Revised Universal Soil Loss Equation)와 SEMMA (Soil Erosion Model for Mountain Areas)를 이용하였다. WUI 화재 소유역은 고도의 범위가 10-30m로 낮으며, 사면의 평균경사는 10.0±7.4°로 준경사면 (general slope)에 해당한다. 토성은 유기물 함량이 높고, 토심이 깊은 양질사토(loamy sand) 이었다. 산불 이후 구곡부(gully)에서 초본층이 왕성하게 재생함에 따라, NDVI (Normalized Difference Vegetation Index)가 최대 0.55에 이르렀다. 침식률 모의 결과 RUSLE은 0.07-94.9 t/ha/storm의 범위이었고, SEMMA는 0.24-83.6 t/ha/storm의 범위를 보였다. RUSLE는 SEMMA보다 평균침식률을 1.19-1.48배 과다 예측하였다. 소나무 화재목이 분포하고, 경사가 급한 중부사면에서 침식률이 크며, 초본층의 회복이 빠른 구곡아래 와지(hollow)에서 상대적으로 낮은 침식률을 보였다. SEMMA는 화재 사면의 NDVI가 0.25(Ic=0.35) 이하인 특정 식생피복에서 급격히 증가하는 침식민감도를 보였다. 유기물 함량이 높고 자연 식생의 회복이 빠른 준경사면은 급경사면에 비해 침식률이 상대적으로 작았다. WUI 산불 지역은 집중호우에 의한 토사재해로 후속적인 물·인적 피해가 예상됨에 따라, 본 연구 결과는 화재 이후 응급대처의 시행을 위한 목표 관리 및 의사 결정의 기초자료로 활용될 것이다.

Keywords

Acknowledgement

본 연구는 교육부(No. 2021R1A6A1A03044326)와 과학기술정보통신부(No. 2023R1A2C1007132)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업으로 이에 감사를 표합니다.

References

  1. Argentiero, I., Ricci, G.F., Elia, M., D'Este, M., Giannico, V., Ronco, F.V., Gentile, F., and Sanesi, G. (2021). "Combining methods to estimate post-fire soil erosion using remote sensing data." Forests, Vol. 12, 1105. 
  2. Brown, L.C., and Foster, G.R. (1987). "Storm erosivity using idealized intensity distributions." Transactions of the American Society of Agricultural and Biological Engineers, Vol. 30, pp. 379-386. 
  3. Chen, X. Vogelmann, J.E., Rollins, M., Ohlen, D., Key, C.H., Yang, L., Huang, C., and Shi, H. (2011). "Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest." International Journal of Remote Sensing, Vol. 32, pp. 7905-7927.  https://doi.org/10.1080/01431161.2010.524678
  4. Elwell, H.A., and Stocking, M.A. (1976). "Vegetal cover to estimated soil erosion hazard in Rhodesia." Geoderma, Vol. 15, pp. 61-70.  https://doi.org/10.1016/0016-7061(76)90071-9
  5. Flanagan, D.C., and Nearing, M.A. (1995) "USDA-Water Erosion Prediction Project (WEPP) version 95.7, hillslope profile and watershed model documentation." National Soil Erosion Research Laboratory Report 10, Edited by Flanagan, D.C., and Nearing, M.A., US Department of Agriculture-Agricultural Search Service, West Lafayette, IN, U.S. 
  6. Food and Agriculture Organization of the United Nations (FAO) (1980). Metodologia Provisional para Evaluacion de la Degradacion de los Suelos; FAO/PNUMA, Rome, Italy; UNEP, Nairobi, Kenya; UNESCO, Paris, France. 
  7. Fullen, M.A., Yi, Z., and Brandsma, R.T. (1996). "Comparison of soil and sediment properties of a loamy sand soil." Soil Technology, Vol. 10, pp. 35-45.  https://doi.org/10.1016/0933-3630(95)00041-0
  8. Gonzalez-Hidalgo, J.C., Batalla, R.J., Cerda, A., and de Luis, M. (2012). "A regional analysis of the effects of largest events on soil erosion." Catena, Vol. 95, pp. 85-90.  https://doi.org/10.1016/j.catena.2012.03.006
  9. Johansen, M.P., Hakonson, T.E., and Breshears, D.D. (2001). "Postfire runoff and erosion from rainfall simuation: Contrasting forests with shrublands and grasslands." Hydrological Processes Vol. 15, pp. 2953-2965.  https://doi.org/10.1002/hyp.384
  10. Lee, J.Y., Yang, D.Y., Kim, J.Y., and Chung, G.S. (2004). "Application of landsat ETM image to estimate the distribution of soil types and erosional pattern in the wildfire area of Gangneung, Gangwon province, Korea." Journal of the Korean Earth Science Society, Vol. 25, No. 8, pp. 764-773. 
  11. Leon, J.R.R., Van Leeuwen, W.J.D., and Casady, G.M. (2012). "Using MODIS-NDVI for the modeling of post-wildfire vegetation response as a function of environmental conditions and pre-fire restoration treatments." Remote Sensing, Vol. 4, pp. 598-621.  https://doi.org/10.3390/rs4030598
  12. Mallinis, G., Maris, F., Kalinderis, I., and Koutsias, N. (2009). "Assessment of post-fire soil erosion risk in fire-affected watersheds using remote sensing and GIS." GIScience & Remote Sensing, Vol. 46, pp. 388-410.  https://doi.org/10.2747/1548-1603.46.4.388
  13. McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K., and Meyer, L.D. (1987). "Revised slope steepness factor for the Universal Soil Loss Equation." Transactions of the American Society of Mechanical Engineers, Vol. 30, pp. 1387-1396. 
  14. McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K., and Meyer, L.D. (1989). "Revised slope length factor for the Universal Soil Loss Equation. Trans." American Society of Agricultural and Biological Engineers, Vol. 32, pp. 1571-1576.  https://doi.org/10.13031/2013.31192
  15. McCool, D.K., Foster, G.R., and Weesies, G.A. (1993). "Slope length and steepness factor." In Predicting Soil Erosion by Water - A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Edited by Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C., USDA-ARS Special Publication, Washington, DC, U.S., Chapter 4. 
  16. Morgan, R.P.C., Hann, M.J., Shilston, D., Lee, E.M., Mirtskhoulava, Ts.E., Nadirashvili, V., Topuria, L., Clarke, J., and Sweeney, M. (2004). "Use of terrain analysis as a basis for erosion risk assessment: A case study from pipeline rights-of-way in Georgia." Terrain and Geohazard challenges Facing Onshore Oil and Gas Pipelines, BP/ICE, London, UK. 
  17. Odemerho, F.O. (1986). "Variation in erosion-slope relationship on cut slopes along a tropical highway." Singapore Journal of Tropical Geography, Vol. 7, pp. 98-107.  https://doi.org/10.1111/j.1467-9493.1986.tb00175.x
  18. Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., and Alewell, C. (2015). "The new assessment of soil loss by water erosion in Europe." Environmental Science & Policy, Vol. 54, pp. 438-447.  https://doi.org/10.1016/j.envsci.2015.08.012
  19. Park, S.D., and Shin, S.S. (2011). "Applying evaluation of soil erosion models for burnt hillslopes - RUSLE, WEPP, and SEMMA." Journal of the Korean Society of Civil Engineers B, Vol. 31, No. 3B, pp. 221-232. 
  20. Park, S.D., Lee, K.S., and Shin, S.S. (2012). "A statistical soil erosion model for burnt mountain areas in Korea - RUSLE approach." Journal of Hydrologic Engineering ASCE, Vol. 17, pp. 292-304.  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000441
  21. Phinzi, K., and Ngetar, N.S. (2019). "The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review." International Soil and Water Conservation Research, Vol. 7, pp. 27-46.  https://doi.org/10.1016/j.iswcr.2018.12.002
  22. Poesen, J. (1981). "Rainwash experiments on the erodibility of loose sediments." Earth Surface Processes and Landforms. Vol. 6, pp. 285-307.  https://doi.org/10.1002/esp.3290060309
  23. Poesen, J.W., Torri, D., and Bunte, K. (1994). "Effects of rock fragments on soil erosion by water at different spatial scales: A review." Catena, Vol. 23, pp. 141-166.  https://doi.org/10.1016/0341-8162(94)90058-2
  24. Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C. (1997). Prediction soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), USDA Agricultural Handbook No. 703, USDA, Washington, DC, U.S. 
  25. Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. (1974). "Monitoring vegetation systems in the great plains with ERTS." In Proceedings of the Third ERTS Symposium, Washington, DC, U.S., pp. 309-317. 
  26. Savat, J. (1982). "Common an uncommon selectivity in the process of fluid transportation: Field observations and laboratory experiments on bare surfaces." CATENA Supplement, Vol. 1, pp. 139-160. 
  27. Shin, S.S., Hwang, Y., S.D., and Park, S.D. (2018). "Effects of litter cover on interrill erosion." Journal of Environmental Research, Vol. 17, No. 1, pp. 11-19. 
  28. Shin, S.S., Park, S.D., and Kim, G. (2022). "Risk assessment of soil erosion using a GIS-based SEMMA in post-fire and managed watershed." Sustainability, Vol. 14, 7339. 
  29. Shin, S.S., Park, S.D., and Kim, G. (2024). "Applicability comparison of GIS-based RUSLE and SEMMA for risk assessment of soil erosion in wildfire watersheds." Remote Sensing, Vol. 16, 932. 
  30. Shin, S.S., Park, S.D., and Lee, K.S. (2013a). "Sediment and hydrological response to vegetation recovery following wildfire on hillslopes and the hollow of a small watershed." Journal of Hydrology, Vol. 499, pp. 154-166.  https://doi.org/10.1016/j.jhydrol.2013.06.048
  31. Shin, S.S., Park, S.D., Lee, J.S., and Lee, K.S. (2013b). "SEMMA revision to evaluate soil erosion on mountainous watershed of large scale." KSCE Journal of Civil and Environmental Engineering Research, Vol. 46, pp. 885-896.  https://doi.org/10.3741/JKWRA.2013.46.9.885
  32. Shin, S.S., Park, S.D., Pierson, F.B., and Williams, C.J. (2019). "Evaluation of physical erosivity factor for interrill erosion on steep vegetated hillslopes." Journal of Hydrology, Vol. 571, pp. 559-572.  https://doi.org/10.1016/j.jhydrol.2019.01.064
  33. Tian, P., Zhu, Z., Yue, Q., He, Y., Zhang, Z., and Hao, F. (2021). "Soil erosion assessment by RUSLE with improved P factor and its validation: Case study on mountainous and hilly areas of Hubei Province, China." International Soil and Water Conservation Research, Vol. 9, pp. 433-444.  https://doi.org/10.1016/j.iswcr.2021.04.007
  34. Van der Knijff, J.M., Jones, R.J.A., and Montanarella, L. (1999). Soil Erosion Risk in Italy. EUR 19022 EN, Office for Official Publications of the European Communities, Luxembourg. 
  35. Van Dijk, A.I.J.M., Bruijnzeel, L.A., and Rosewell, C.J. (2002). "Rainfall intensity-kinetic energy relationships." Journal of Hydrology, Vol. 261, pp. 1-23.  https://doi.org/10.1016/S0022-1694(02)00020-3
  36. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall erosion losses from cropland east of the Rocky Mountains. Agriculture Hand Book 282, US Department of Agriculture, Washington DC, U.S. 
  37. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses-a guide to conservation planning. Agriculture Handbook 537, US Department of Agriculture-Science and Education Administration, Washingtion DC, U.S. 
  38. Wischmeier, W.H., Johnson, C.B., and Cross, B.V. (1971). "A soil erodibility monograph for farmland and construction sites." Journal of Soil and Water Conservation, Vol. 26, pp. 189-193. 
  39. Yariv, S. (1976). "Comments on the mechanism of soil detachment by rainfall." Geoderma, Vol. 15, pp. 393-399.  https://doi.org/10.1016/0016-7061(76)90043-4
  40. Yonhap News (2023). Gangneung wildfire. accessed 11 April 2023.