DOI QR코드

DOI QR Code

Network analysis for assessing urban resilience from the perspective of urban flooding: case study of Seoul, Korea

도시침수 관점에서의 도시회복력 평가를 위한 네트워크 분석: 서울특별시 중심으로

  • Park, HyungJun (Department of Civil Engineering, Hongik University) ;
  • Song, Sumin (Department of Civil Engineering, Hongik University) ;
  • Kim, DongHyun (Department of Civil Engineering, Hongik University) ;
  • Lee, Seung Oh (Department of Civil Engineering, Hongik University)
  • 박형준 (홍익대학교 토목공학과) ;
  • 송수민 (홍익대학교 토목공학과) ;
  • 김동현 (홍익대 토목공학과) ;
  • 이승오 (홍익대 토목공학과)
  • Received : 2024.03.03
  • Accepted : 2024.05.14
  • Published : 2024.06.30

Abstract

The quantification methods and definitions of resilience vary and are studied across many fields. However, this diversity can lead to gaps in interpretation regarding the meaning and indicators of resilience, potentially having a negative impact on resilience assessments. Therefore, uniform standards for defining and quantifying resilience are essential. This study presented a definition of resilience and socio-structural evaluation methods of resilience through network analysis. Furthermore, through analyzing various definitions of resilience, the definition of resilience in the context of urban flooding was presented. Distinguishing between static and dynamic resilience, an evaluation method based on common attributes was proposed. Lastly, the economic effects of introducing resilience were analyzed using an inundation trace map. Future research on the secondary effects through standardized resilience assessments is expected to be widely utilized in decision-making stages within urban flood policies.

회복력의 정량화방법과 정의는 다양하며 많은 분야에서 연구되어지고 있다. 하지만 이러한 다양성은 회복력의 의미, 지표 등에서 해석의 차이를 유발하여 회복력 평가 시 긍정적이지 않은 영향을 끼칠 수 있다. 따라서 회복력 평가의 일관성 있는 기준이 필요하며 본 연구에서는 회복력 평가에 있어 고려해야될 정의와 회복력의 사회·구조적 평가방법을 네트워크 분석을 통해 검토하였다. 다양한 회복력 정의의 분석을 통해 도시침수분야에서 의 회복력을 정의하였으며 회복력을 정적 및 동적 회복력으로 구별하여 일관성 있는 속성별 평가 방법을 제시하였다. 그리고 과거 침수흔적도를 활용하여 회복력을 도입함으로써 얻을 수 있는 경제적인 효과를 분석하였다. 평가지역의 대부분은 낮음등급으로 나타났으며 최대 약 96억원의 복구 비용이 발생하였다. 향후 통일된 기준의 회복력평가를 통한 2차적인 파급효과에 대한 연구가 수행된다면 도시침수 관리정책 내 의사결정 단계 등에서 다양하게 활용될 것으로 기대된다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 기후위기대응 홍수방어능력 기술개발사업의 지원을 받아 연구되었습니다(2022003470001).

References

  1. Blaikie, P., Cannon, T., Davis, I., and Wisner, B. (1994). At risk: Natural hazards, people's vulnerability and disasters. Routledge, London, UK. 
  2. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O'Rourke, T.D., Reinhorn, A.M., Shinozuka, M., Tierney, K., Wallace, W.A., and Winterfeldt, D.V. (2003). "A framework to quantitatively assess and enhance the seismic resilience of communities." Earthquake Spectra, Vol. 19, No. 4, pp. 733-752. 
  3. Buckle, P., Marsh, G., and Smale, S. (2001). Assessment of personal and community resilience and vulnerability. EMA Project No. 15/2000, Emergency Management Australia, Canberra, Australia. 
  4. Bulti, D.T., Girma, B., and Megento, T.L. (2019). "Community flood resilience assessment frameworks: A review." SN Applied Sciences, Vol.1, No.1663, pp. 1-17. 
  5. Burton, C.G. (2012). The development of metrics for community resilience to natural disasters. ProQuest, Ann Arbor, MI, U.S. 
  6. Campanella, T.J. (2006). "Urban resilience and the recovery of New Orleans." Journal of the American Planning Association, Vol. 72, No. 2, pp. 141-146. 
  7. Cutter, S., Barnes, M., Berry, C., Burton, E., Evans, E., Tate, E., and Webb, J. (2008). "Community and regional resilience: Perspectives from hazards, disasters, and emergency management." Geography, Vol. 1, No. 7, pp. 2301-2306. 
  8. Cutter, S.L., Burton, C.G., and Emrich, C.T. (2010). "Disaster resilience indicators for benchmarking baseline conditions." Journal of Homeland Security and Emergency Management, Vol. 7, No. 1, 51. 
  9. Edgemon, L., Freeman, C., Burdi, C., Hutchison, J., Marsh, K., and Pfeiffer, K. (2022). Community resilience challenges index. Federal Emergency Management Agency, Washington D.C, U.S. 
  10. Godschalk, D.R. (2003). "Urban hazard mitigation: Creating resilient cities." Natural Hazards Review, Vol. 4, No. 3, pp. 136-143. 
  11. Ha, J., and Chung, G. (2019). "Snow vulnerability analysis for administrative districts in South Korea." Journal of the Korean Society of Hazard Mitigation, Vol. 19, No. 6, pp. 187-195. 
  12. Hamilton, W.A.H. (2009). "Resilience and the city: The water sector." Proceedings of the Institution of Civil Engineers-Urban Design and Planning, Vol. 162, No. 3, pp. 109-121. 
  13. Hashimoto, T., Stedinger, J., and Loucks, D. (1982). "Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation." Water Resources Research, Vol. 18, No. 1, pp. 14-20. 
  14. Henstra, D. (2012). "Toward the climate-resilient city: Extreme weather and urban climate adaptation policies in two Canadian provinces." Journal of Comparative Policy Analysis: Research and Practice, Vol. 14, No. 2, pp. 175-194. 
  15. Heo, A. (2016). Disaster resilience in local government: Indicator design and influence factors. Ph.D. Dissertation. Sungkyunkwan University. 
  16. Hong, J., Yeon, S., and Kim, J. (2015). Development of traffic accident frequency prediction modelby administrative zone - A case of Seoul. Journal of Civil and Environmental Engineering Research, Vol. 35, No. 6, pp. 1297-1308. 
  17. Huizinga, J., De Moel, H., and Szewczyk, W. (2017). Global flood depth-damage functions: Methodology and the database with guidelines. No. JRC105688. Joint Research Centre, Brussels, Belgium. 
  18. Hung, H.C., Yang, C.Y., Chien, C.Y., and Liu, Y.C. (2016). "Building resilience: Mainstreaming community participation into integrated assessment of resilience to climatic hazards in metropolitan land use management." Land Use Policy, Vol. 50, pp. 48-58. 
  19. Jenks, G.F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography No. 7, Munchen, Germany, pp.186-190. 
  20. Jeon, E., and Byun, B. (2017). "A study on the development and application of community resilience evaluation-indicators for responding to climate change." The Geographical Journal of Korea, Vol. 51, No. 1, pp. 47-58. 
  21. Jeung, S., Yoo, J., Hur, D., and Seung, K. (2023). "Development of a method to create a matrix of heavy rain damage rating standards using rainfall and heavy rain damage data." Journal of Korea Water Resources Association, Vol. 56, No. 2, pp. 115-124. 
  22. Ji, Y., and Oh, Y. (2022). "Study on measuring disaster resilience: Focusing on the applicability to disaster management policies." Korean Public Administration Quarterly. Vol. 34, No. 1, pp. 1-27. 
  23. Kang, H.C. (2013). "A guide on the use of factor analysis in the assessment of construct validity." Journal of Korean Academy of Nursing, Vol. 43, No. 5, pp. 587-594. 
  24. Keating, A., Campbell, K., Szoenyi, M., McQuistan, C., Nash, D., and Burer, M. (2017). "Development and testing of a community flood resilience measurement tool." Natural Hazards and Earth System Sciences, Vol. 17, No. 1, pp. 77-101. 
  25. Kim, C. (2020). Analysis of community flood resilience in relation to characteristics of flood damage. Ph. D. Dissertation, Seoul National University. 
  26. Kim, D., Song, S., Kang, S., Kwon, T., Kim, J., Nam, K., Yoon, D., Lee, D., Jung, J., Jo, S., and Hong, S. (2016). Urban climate resilience: Operationalization and evaluation (II). Report 2016-02, Korea Enviornment Institute. 
  27. Kim, Y.-S. (2000). "Techniques of flood damage investigation and flood losses data management. The Journal of Engineering Geology, Vol. 10, No. 2, pp. 36-51. 
  28. Korea Institute of Civil Engineering and Building Technology (KICT) (2022). Korea, accessed 28 April 2024, . 
  29. Kwon, P, Lee, M., Huh, Y., and Yu, K. (2015). "Rearranging emergency medical service region using GIS network analysis - Daejeon metropolitan city case study." Journal of Korean society for Geospatial Information Science, Vol. 23, No. 3, pp. 11-21. 
  30. Lee, D., and Kwon, G. (2017). "An analysis on the determinants of disaster resilience: Focused on natural disaster." The Korean Association For Policy Studies, Vol. 26, No. 2, pp. 475-509. 
  31. Lee, E., Ji, J., and Yi, J. (2018). "A study of spatial multi-criteria decision making for optimal flood defense measures considering regional characteristic." Journal of Korea Water Resources Association, Vol. 51, No. 4, pp. 301-311. 
  32. Lee, J. (2015). Climate disaster resilience in municipalities. Ph.D. Dissertation. Seoul National University. 
  33. Lee, S., Choi, Y., and Yi, J. (2020). "Urban flood vulnerability assessment using the entropy weight method." Journal of the Korean Society of Hazard Mitigation, Vo. 20, No. 6, pp. 389-397. 
  34. Lee, Y., Kim, S., Kim, Y., and Kim, H. (2013). "Evaluation of resilience in Anyang River basin for flood damage mitigation." Journal of KOSHAM, Vol. 13, No. 2, pp. 291-298. 
  35. Mayunga, J.S. (2009). Measuring the measure: A multi-dimensional scale model to measure community disaster resilience in the US Gulf Coast region. Texas A&M University, TX, U.S. 
  36. Meerow, S., Newell, J.P., and Stults, M. (2016). "Defining urban resilience: A review." Landscape and Urban Planning, Vol. 147, pp. 38-49.
  37. Ministry of Land, Infrastructure and Transport (MOLIT) (2023). Statistics on urban planning status, Report No. 315002. 
  38. Ministry of the Interior and Safety (MOIS) (2022). Korea, accessed 28 April 2024, . 
  39. Park, K., and Won, J.H. (2019). "Analysis on distribution characteristics of building use with risk zone classification based on urban flood risk assessment." International Journal of Disaster Risk Reduction, Vol. 38, 101192. 
  40. Park, M., and Choi, S. (2008). "Development of an inundation risk evaluation method based on a multi criteria decision making." Journal of Korea Water Resources Association, Vol. 41, No.4, pp. 1148-1151. 
  41. Pelling, M. (2003). The vulnerability of cities: Natural disasters and social resilience. Routledge, London. 
  42. Rodin, J. (2014). The resilience dividend: Being Strong in a world where things go wrong. Perseus Books Group, New York, NY, U.S. 
  43. Rose, A. (2007). "Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions." Environmental Hazards. Vol. 7, No. 4, pp. 383-398. 
  44. Seo, S., Jang. S., and Jung. J. (2022). "Analysis of disaster resilience index using regional flood damage characteristics." Journal of the Korean Society of Hazard Mitigation, Vol. 22, No. 6, pp. 55-67. 
  45. Shin, K., and Lee, T. (2014). "Priority assignment for emergency medical service provision in disaster by considering resource limitation." Journal of the Korean Society of Hazard Mitigation, Vol. 14, No. 2, pp. 159-168. 
  46. Shin, S. (2012). "Economic feasibility study of port disaster prevention facility from climate change storm surge using MD-FDA." Ocean Policy Research, Vol. 27, No. 2, pp. 133-176. 
  47. Timmerman, P. (1981). Vulnerability, resilience and the collapse of society. Environmental Monograph No. 1. Institute for Environ mental Studies, Toronto University, Toronto, Canada. 
  48. Vugrin, E.D., Warren, D.E., Ehlen, M.A., and Camphouse, R.C. (2010). Sustainable & resilient critical infrastructure systems. Springer, Berlin Heidelberg, Germany, pp. 77-116. doi: 10.1007/978-3-642-11405-2_3. 
  49. Wagner, I., and Breil, P. (2013). "The role of ecohydrology in creating more resilient cities." Ecohydrology & Hydrobiology, Vol. 13, No.2, pp. 113-134. 
  50. Wildavsky, A.B. (1988). Searching for safety. Transaction Publishers, NJ, U.S. 
  51. Yim, Y., and Choi, H. (2020). "Regression models on flood damage records by rainfall characteristics for regional flood damage estimates." Journal of Wetlands Researh, Vol. 22, No. 4, pp. 302-311. 
  52. Yook, D. (2019). Selection, operation, maintenance, and management methods for disaster management roads to effectively handle disaster situations. KRIHS POLICY BRIEF No. 716, Korea Research Institute for Human Settlements, pp. 1-8.