DOI QR코드

DOI QR Code

Solution-Processed Indium-Gallium Oxide Thin-Film Transistors for Power Electronic Applications

전력반도체 응용을 위한 용액 공정 인듐-갈륨 산화물 반도체 박막 트랜지스터의 성능과 안정성 향상 연구

  • Se-Hyun Kim (Department of Smart Green Technology Engineering, Pukyong National University) ;
  • Jeong Min Lee (Department of Smart Green Technology Engineering, Pukyong National University) ;
  • Daniel Kofi Azati (Department of Smart Green Technology Engineering, Pukyong National University) ;
  • Min-Kyu Kim (Department of Nanotechnology Engineering, Pukyong National University) ;
  • Yujin Jung (Department of Nanotechnology Engineering, Pukyong National University) ;
  • Kang-Jun Baeg (Department of Smart Green Technology Engineering, Pukyong National University)
  • 김세현 (국립부경대학교 스마트그린기술융합공학과) ;
  • 이정민 (국립부경대학교 스마트그린기술융합공학과) ;
  • ;
  • 김민규 (국립부경대학교 나노융합공학과) ;
  • 정유진 (국립부경대학교 나노융합공학과) ;
  • 백강준 (국립부경대학교 스마트그린기술융합공학과)
  • Received : 2024.02.12
  • Accepted : 2024.02.21
  • Published : 2024.07.01

Abstract

Next-generation wide-bandgap semiconductors such as SiC, GaN, and Ga2O3 are being considered as potential replacements for current silicon-based power devices due to their high mobility, larger size, and production of high-quality wafers at a moderate cost. In this study, we investigate the gradual modulation of chemical composition in multi-stacked metal oxide semiconductor thin films to enhance the performance and bias stability of thin-film transistors (TFTs). It demonstrates that adjusting the Ga ratio in the indium gallium oxide (IGO) semiconductor allows for precise control over the threshold voltage and enhances device stability. Moreover, employing multiple deposition techniques addresses the inherent limitations of solution-processed amorphous oxide semiconductor TFTs by mitigating porosity induced by solvent evaporation. It is anticipated that solution-processed indium gallium oxide (IGO) semiconductors, with a Ga ratio exceeding 50%, can be utilized in the production of oxide semiconductors with wide band gaps. These materials hold promise for power electronic applications necessitating high voltage and current capabilities.

Keywords

Acknowledgement

이 논문은 2023학년도 산업통상자원부와 교육부에서 지원하는 부처협업형 인재양성(반도체전공트랙) 사업(P0022194)과 한국연구재단의 지역대학우수과학자 지원사업(2021R1I1A3060334)에 의하여 연구되었음.

References

  1. Shivani, D. Kaur, A. Ghosh, and M. Kumar, Mater. Today Commun., 33, 104244 (2022). doi: https://doi.org/10.1016/j.mtcomm.2022.104244
  2. X. She, A. Q. Huang, O. Lucia, and B. Ozpineci, IEEE Trans. Ind. Electron., 64, 8193 (2017). doi: https://doi.org/10.1109/TIE.2017.2652401
  3. T. J. Flack, B. N. Pushpakaran, and S. B. Bayne, J. Electron. Mater., 45, 2673 (2016). doi: https://doi.org/10.1007/s11664-016-4435-3
  4. A. Bindra, IEEE Power Electron. Mag., 2, 42 (2015). doi: https://doi.org/10.1109/MPEL.2014.2382195
  5. S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). doi: https://doi.org/10.1063/1.5006941
  6. H. J. Yang, H. J. Seul, M. J. Kim, Y. Kim, H. C. Cho, M. H. Cho, Y. H. Song, H. Yang, and J. K. Jeong, ACS Appl. Mater. Interfaces, 12, 52937 (2020). doi: https://doi.org/10.1021/acsami.0c16325
  7. F. M. Ciou, Y. C. Chang, P. H. Chen, C. Y. Lin, Y. H. Lin, K. H. Chen, F. Y. Jin, Y. S. Lin, W. C. Hung, and K. C. Chang, Semicond. Sci. Technol., 37, 015009 (2021). doi: https://doi.org/10.1088/1361-6641/ac3dd5
  8. S. K. Park, Y. H. Kim, and J. I. Han, J. Phys. D: Appl. Phys., 42, 125102 (2009). doi: https://doi.org/10.1088/0022-3727/42/12/125102
  9. P. K. Nayak, J. A. Caraveo-Frescas, Z. Wang, M. N. Hedhili, and H. N. Alshareef, Adv. Electron. Mater., 1, 1500014 (2015). doi: https://doi.org/10.1002/aelm.201500014
  10. J. W. Hennek, M. G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc., 134, 9593 (2012). doi: https://doi.org/10.1021/ja303589v
  11. T. S. Jung, S. J. Kim, C. H. Kim, J. Jung, J. Na, M. M. Sabri, and H. J. Kim, IEEE Trans. Electron Devices, 62, 2888 (2015). doi: https://doi.org/10.1109/TED.2015.2455558
  12. M. M. Sabri, J. Jung, D. H. Yoon, S. Yoon, Y. J. Tak, and H. J. Kim, J. Mater. Chem. C, 3, 7499 (2015). doi: https://doi.org/10.1039/C5TC01457C
  13. J. Lee, K. H. Lim, and Y. S. Kim, Sci. Rep., 8, 13905 (2018). doi: https://doi.org/10.1038/s41598-018-32233-4
  14. D. J. Kim, D. L. Kim, Y. S. Rim, C. H. Kim, W. H. Jeong, H. S. Lim, and H. J. Kim, ACS Appl. Mater. Interfaces, 4, 4001 (2012). doi: https://doi.org/10.1021/am3008278
  15. D. J. Kim, Y. S. Rim, and H. J. Kim, ACS Appl. Mater. Interfaces, 5, 4190 (2013). doi: https://doi.org/10.1021/am4002259
  16. C. H. Kim, Y. S. Rim, and H. J. Kim, ACS Appl. Mater. Interfaces, 5, 6108 (2013). doi: https://doi.org/10.1021/am400943z
  17. X. Yu, T. J. Marks, and A. Facchetti, Nat. Mater., 15, 383 (2016). doi: https://doi.org/10.1038/nmat4599
  18. C. H. Choi, Y. W. Su, L. Y. Lin, C. C. Cheng, and C. H. Chang, RSC Adv., 5, 93779 (2015). doi: https://doi.org/10.1039/c5ra16392g
  19. I. Y. Jo, J. G. Park, J. H. Moon, J. Y. Jung, D. E. Kim, and K. J. Baeg, Org. Electron., 75, 105358 (2019). doi: https://doi.org/10.1016/j.orgel.2019.07.016