DOI QR코드

DOI QR Code

The Molecular Metabolism of the Key Ingredients in the Steamed and Freeze-Dried Mature Silkworm Powder: Effects and Mechanisms

  • Min-Ju Kim (Health Park co.,ltd. Seoul National University) ;
  • Seong Ryul Kim (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ji Hae Lee (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Byeongyeob Jeon (QBM co., ltd.) ;
  • Seokho Kim (QBM co., ltd.) ;
  • Eun Ji Go (QBM co., ltd.) ;
  • Hyunwoo Park (Health Park co.,ltd. Seoul National University)
  • Received : 2024.05.23
  • Accepted : 2024.06.25
  • Published : 2024.06.30

Abstract

The mature Bombyx mori silkworm is recognized as a rich source of several nutrients. A unique steaming process has been developed to enhance the palatability of Bombyx mori silkworm and make it more convenient to consume. Additionally, it has also been freeze-dried into a powder form, which is recognized as a nutritional supplement with many health benefits. Steamed and Freeze-dried Mature Silkworm Powder (SMSP) is said to offer a wide range of benefits, including longevity, improved athletic performance, prevention of alcohol-induced liver fibrosis or tumors, amelioration of fatty liver, prevention of peptic ulcers, regulation of melanin production, and mitigation of Parkinson's and Alzheimer's diseases by improving cognitive function. The nutritional composition of SMSP is particularly high in glycine, alanine and serine. This review aims to summarize the molecular mechanisms underlying the diverse effects induced by these key components of SMSP. Such elucidation will enhance the credibility of future studies on SMSP, which will require more comprehensive analyses. It appears that SMSP represents a natural health supplement that could have a positive impact on global human health while increasing income.

Keywords

References

  1. Alarcon J, Quevedo L, Reyes P (1995) Inhibitory action of hydrogen peroxide on a high-resistance epithelium. Pharmacology 50, 111-118. https://doi.org/10.1159/000139272
  2. Burke RE (2007) Inhibition of mitogen-activated protein kinase and stimulation of Akt kinase signaling pathways: Two approaches with therapeutic potential in the treatment of neurodegenerative disease. Pharmacol Therapeut 114, 261-277. https://doi.org/10.1016/j.pharmthera.2007.02.002
  3. Castner S, Murthy N, Ridler K, Herdon H, Roberts B, Weinzimmer D, et al. (2014) Relationship between glycine transporter 1 inhibition as measured with positron emission tomography and changes in cognitive performances in nonhuman primates. Neuropsychopharmacology 39, 2742-2749. https://doi.org/10.1038/npp.2014.4
  4. Chen H, Shen F, Sherban A, Nocon A, Li Y, Wang H, et al. (2018) DEP domain-containing mTOR-interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease. Hepatology 68, 496-514. https://doi.org/10.1002/hep.29849
  5. Chen X, Guo C, Kong J (2012) Oxidative stress in neurodegenerative diseases☆. Neural Regen Res 7, 376-385. https://doi.org/10.3969/j.issn.1673-5374.2012.05.009
  6. Cho JM, Kim KY, Ji SD, Kim EH (2016) Protective effect of boiled and freeze-dried mature silkworm larval powder against diethylnitrosamine-induced hepatotoxicity in mice. J Cancer Prev 21, 173. https://doi.org/10.15430/JCP.2016.21.3.173
  7. Chyun J, Yim J, Cha Y (2002) Effects of Alanine and Glutamine Supplementation on Alcohol Metabolism in ICR Mice. Nutr Sci 5, 9-12.
  8. Coyle JT, Tsai G (2004) The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology 174, 32-38. https://doi.org/10.1007/s00213-003-1709-2
  9. Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigao P, Stipursky J, et al. (2012) Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 287, 41432-45. https://doi.org/10.1074/jbc.M112.380824
  10. Diniz LP, Matias ICP, Garcia MN, Gomes FCA (2014) Astrocytic control of neural circuit formation: highlights on TGF-beta signaling. Neurochem Int 78, 18-27. https://doi.org/10.1016/j.neuint.2014.07.008
  11. Duman JG, Pathak NJ, Ladinsky MS, McDonald KL, Forte JG (2002) Three-dimensional reconstruction of cytoplasmic membrane networks in parietal cells. J Cell Sci 115, 1251-1258. https://doi.org/10.1242/jcs.115.6.1251
  12. Fu C, Chen J, Lu J, Yi L, Tong X, Kang L, et al. (2020) Roles of inflammation factors in melanogenesis. Mol Med Rep 21, 1421-1430. https://doi.org/10.3892/mmr.2020.10950
  13. Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141, 1572-1585. https://doi.org/10.1053/j.gastro.2011.09.002
  14. Ghosh S, Gahukar RT, Meyer-Rochow VB, Jung C (2021) Future prospects of insects as a biological resource in India: Potential biological products utilizing insects with reference to the frontier countries. Entomol Res 51, 209-229. https://doi.org/10.1111/1748-5967.12507
  15. Hakkinen HM, Kulonen E (1975) Effect of ethanol on the metabolism of alanine, glutamic acid, and proline in rat liver. Biochem Pharmacol 24, 199-204. https://doi.org/10.1016/0006-2952(75)90277-4
  16. Hernandez-Munoz R, Montiel-Ruiz C, Vazquez-Martinez O (2000) Gastric mucosal cell proliferation in ethanol-induced chronic mucosal injury is related to oxidative stress and lipid peroxidation in rats. Lab Invest 80, 1161-1169. https://doi.org/10.1038/labinvest.3780124
  17. Hill SE, Buffey J, Thody AJ, Oliver I, Bleehen SS, Mac Neil S (1989) Investigation of the regulation of pigmentation in α-melanocyte-stimulating hormone responsive and unresponsive cultured B16 melanoma cells. Pigment Cell Res 2, 161-166. https://doi.org/10.1111/j.1600-0749.1989.tb00181.x
  18. Hunt G, Todd C, Kyne S, Thody A (1994a) ACTH stimulates melanogenesis in cultured human melanocytes. J Endocrinol 140, R1-R3. https://doi.org/10.1677/joe.0.140R001
  19. Hunt G, Todd C, Cresswell JE, Thody AJ (1994b) α-Melanocyte stimulating hormone and its analogue Nle4DPhe7α-MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J Cell Sci 107, 205-211. https://doi.org/10.1242/jcs.107.1.205
  20. Hu R, Chen J, Lujan B, Lei R, Zhang M, Wang Z, et al. (2016) Glycine triggers a non-ionotropic activity of GluN2A-containing NMDA receptors to confer neuroprotection. Sci Rep 6, 34459. https://doi.org/10.1038/srep34459
  21. Ishikawa M, Kawase I, Ishii F (2007) Glycine inhibits melanogenesis in vitro and causes hypopigmentation in vivo. Biol Pharm Bull 30, 2031-2036. https://doi.org/10.1248/bpb.30.2031
  22. Jiang Z, Zhou J, Zhou D, Zhu Z, Sun L, Nanji AA (2015) The Adiponectin-SIRT 1-AMPK Pathway in Alcoholic Fatty Liver Disease in the Rat. Alcoholism: Clin Exp Res 39, 424-433. https://doi.org/10.1111/acer.12641
  23. Ji SD, Kim NS, Kweon H, Choi BH, Yoon SM, Kim KY, et al. (2016) Nutrient compositions of Bombyx mori mature silkworm larval powders suggest their possible health improvement effects in humans. J Asia Pac Entomol 19, 1027-1033. https://doi.org/10.1016/j.aspen.2016.08.004
  24. Ji SD, Kim NS, Lee JY, Kim MJ, Kweon H, Sung G, et al. (2015) Development of processing technology for edible mature silkworm. J Seri Entomol Sci 53, 38-43. https://doi.org/10.7852/jses.2015.53.1.38
  25. Ji SD, Son JG, Kim SW, Kim NS, Kim KY, Kweon HY, et al. (2017) Production techniques to Improve the Quality of Steamed and Freeze-Dried Mature Silkworm Larval Powder. Int J Indust Entomol 34, 17-22. https://doi.org/10.7852/ijie.2017.34.2.17
  26. Kim AY, Park JW, Kang SK, Jeong CY, Kim NS, Kim KY, et al. (2023a) Development of spectrophotometric quality analysis protocols for determining the purity of two silkworm products with different health-promoting effects. J Asia Pac Entomol 26, 102029. https://doi.org/10.1016/j.aspen.2022.102029
  27. Kim HJ, Kim KY, Ji SD, Lee HT (2017) Anti-melanogenic activity of steamed and freeze-dried mature silkworm powder. J Asia Pac Entomol 20, 1001-1006. https://doi.org/10.1016/j.aspen.2017.07.013
  28. Kim KY, Koh YH (2022) The past, present and future of silkworm as a natural health food. Food Sci Indust 55, 154-165. https://doi.org/10.23093/FSI.2022.55.2.154
  29. Kim YH, Nguyen P, Kim SR, Kang SK, Kim KY, Koh YH (2023b) A comparison of nutritional components and memory enhancement effects of HongJam prepared from different silkworm varieties that weave yellow-colored cocoons. J Asia Pac Entomol 26, 102167. https://doi.org/10.1016/j.aspen.2023.102167
  30. Klatte S, Wendisch VF (2015) Role of L-alanine for redox self-sufficient amination of alcohols. Microb Cell Fact 14, 1-10. https://doi.org/10.1186/s12934-014-0189-x
  31. Kreisberg RA, Siegal AM, Owen WC (1972) Alanine and gluconeogenesis in man: effect of ethanol. J Clin Endocrinol Metab 34, 876-883. https://doi.org/10.1210/jcem-34-5-876
  32. Lee AY (2015) Recent progress in melasma pathogenesis. Pigm Cell Melanoma Res 28, 648-660. https://doi.org/10.1111/pcmr.12404
  33. Lee DY, Cho JM, Yun SM, Hong KS, Ji SD, Son JG, et al. (2017a) Comparative effect of silkworm powder from 3 Bombyx mori varieties on ethanol-induced gastric injury in rat model. Int J Indust Entomol 35, 14-21. https://doi.org/10.7852/ijie.2017.35.1.14
  34. Lee DY, Hong KS, Song MY, Yun SM, Ji SD, Son JG, et al. (2020a) Hepatoprotective effects of steamed and freeze-dried mature silkworm larval powder against ethanol-induced fatty liver disease in rats. Foods 9, 285. https://doi.org/10.3390/foods9030285
  35. Lee DY, Hong KS, Yun SM, Song MY, Ji SD, Son JG, et al. (2017b) Mature silkworm powder reduces blood alcohol concentration and liver injury in ethanol-treated rats. Int J Indust Entomol 35, 123-128. https://doi.org/10.7852/ijie.2017.35.2.123
  36. Lee DY, Song MY, Hong KS, Yun SM, Han YM, Kim EH (2023) Low dose administration of mature silkworm powder induces gastric mucosal defense factors in ethanol-induced gastric injury rat model. Food Sci Biotech 32, 1551-1559. https://doi.org/10.1007/s10068-023-01278-1
  37. Lee DY, Yun SM, Song MY, Ji SD, Son JG, Kim EH (2020b) Administration of steamed and freeze-dried mature silkworm larval powder prevents hepatic fibrosis and hepatocellular carcinogenesis by blocking TGF-β/STAT3 signaling cascades in rats. Cells 9, 568. https://doi.org/10.3390/cells9030568
  38. Lee JH, Kim S, Jo YY, Kweon H, Jeon JY, Ju WT, et al. (2019) Effect of humidity on the quality characteristics of the 3 rd day of 5 th instar silkworm powder. Int J Indust Entomol 39, 74-81. https://doi.org/10.7852/ijie.2019.39.2.74
  39. Li B, Nasser MI, Masood M, Adlat S, Huang Y, Yang B, et al. (2020) Efficiency of Traditional Chinese medicine targeting the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 126, 110074. https://doi.org/10.1016/j.biopha.2020.110074
  40. Ligumsky M, Sestieri M, Okon E, Ginsburg I (1995) Antioxidants inhibit ethanol-induced gastric injury in the rat: role of manganese, glycine, and carotene. Scand J Gastroenterol 30, 854-860. https://doi.org/10.3109/00365529509101591
  41. Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445, 843-850. https://doi.org/10.1038/nature05660
  42. Liu X, Liu Y, Liu Z, Lin C, Meng F, Xu L, et al. (2021) CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner. Mol Cancer 20, 1-19. https://doi.org/10.1186/s12943-021-01412-9
  43. Liu Z, Que S, Xu J, Peng T (2014) Alanine aminotransferase-old biomarker and new concept: a review. Int J Med Sci 11, 925. https://doi.org/10.7150/ijms.8951
  44. Liu Z, Yao X, Jiang W, Li W, Zhu S, Liao C, et al. (2020) Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation 17, 1-21. https://doi.org/10.1186/s12974-020-01751-2.
  45. Ma Y L, Yang Y, Thakur K, Cespedes-Acuna CL, Zhang JG, Wei ZJ (2021) Evaluation of spatial memory and anti-fatigue function of long-term supplementation of β-alanine and confirmation through cAMP-PKA and apoptosis pathways in mice. eFood 2, 185-192. https://doi.org/10.53365/efood.k/144395.
  46. Mai LX, Kang SK, Jo YY, Nguyen P, Kim A, Kim KY, et al. (2022) An alkaline protease-digestion of silkworm powder enhances its effects over healthspan, autophagy, and mitochondria function in a rotenone-induced Drosophila model. Front Nutr 9, 808295. https://doi.org/10.3389/fnut.2022.808295
  47. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009
  48. Nguyen P, Kim KY, Kim AY, Choi BH, Osabutey AF, Park YH, et al. (2020a) Mature silkworm powders ameliorated scopolamine-induced amnesia by enhancing mitochondrial functions in the brains of mice. J Funct Foods 67, 103886. https://doi.org/10.1016/j.jff.2020.103886
  49. Nguyen P, Kim KY, Kim AY, Kim NS, Kweon H, Ji SD, et al. (2016) Increased healthspan and resistance to Parkinson's disease in Drosophila by boiled and freeze-dried mature silk worm larval powder. J Asia Pac Entomol 19, 551-561. https://doi.org/10.1016/j.aspen.2016.05.003
  50. Nguyen P, Kim SW, Jo YY, Beteta SP, Kang SK, Kim SB, et al. (2020b) A comparative study on the phytochemical and anti-oxidant activity differences in HongJam prepared with various silkworm varieties. Int J Indust Entomol 41, 19-27. https://doi.org/10.7852/ijie.2020.41.2.19
  51. Pan JS, He SZ, Xu HZ, Zhan XJ, Yang XN, Xiao HM, et al. (2008) Oxidative stress disturbs energy metabolism of mitochondria in ethanol-induced gastric mucosa injury. World J Gastroenterol: WJG 14, 5857. https://doi.org/10.3748/wjg.14.5857
  52. Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metabol 9, 327-338. . https://doi.org/10.1016/j.cmet.2009.02.006
  53. Rabah Y, Frances R, Minatchy J, Guedon L, Desnous C, Placais P Y, et al. (2023) Glycolysis-derived alanine from glia fuels neuronal mitochondria for memory in Drosophila. Nat Metab 5, 2002-2019. https://doi.org/10.1038/s42255-023-00910-y
  54. Rehman SU, Shah SA, Ali T, Chung JI, Kim MO (2017) Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol Neurobiol 54, 255-271. https://doi.org/10.1007/s12035-015-9604-5
  55. Ren R, Wang Z, Wu M, Wang H (2020) Emerging roles of SIRT1 in alcoholic liver disease. Int J Biol Sci 16, 3174. https://doi.org/10.7150/ijbs.49535
  56. Sattler JH, Fuchs M, Tauber K, Mutti FG, Faber K, Pfeffer J, et al. (2012) Redox self-sufficient biocatalyst network for the amination of primary alcohols. Angew Chem Int Ed 51, 9156-9159. https://doi.org/10.1002/anie.201204683
  57. Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci 92, 3948-3952. https://doi.org/10.1073/pnas.92.9.3948
  58. Senthilkumar R, Sengottuvelan M, Nalini N (2004) Protective effect of glycine supplementation on the levels of lipid peroxidation and antioxidant enzymes in the erythrocyte of rats with alcohol-induced liver injury. Cell Biochem Funct 22, 123-128. https://doi.org/10.1002/cbf.1062
  59. Shimokawa T, Yamagiwa D, Hondo E, Nishiwaki S, Kiso Y, Makita T (2003) Histological observation of the proper gastric gland in Minke whale, Balaenoptera acutorostrata. J Vet Med Sci 65, 423-426. https://doi.org/10.1292/jvms.65.423
  60. Sim WC, Kim DG, Lee W, Sim H, Choi YJ, Lee BH (2019) Activation of SIRT1 by l-serine increases fatty acid oxidation and reverses insulin resistance in C2C12 myotubes (l-serine activates SIRT1 in C2C12 myotubes). Cell Biol Toxicol 35, 457-470. https://doi.org/10.1007/s10565-019-09463-x
  61. Sorbi D, Boynton J, Lindor KD (1999) The ratio of aspartate aminotransferase to alanine aminotransferase: potential value in differentiating nonalcoholic steatohepatitis from alcoholic liver disease. Am J Gastroenterol 94, 1018-1022.
  62. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810-23. 10.1016/j.cell.2011.02.018
  63. Szabo S, Nagy L, Plebani M (1992) Glutathione, protein sulfhydryls and cysteine proteases in gastric mucosal injury and protection. Clinica Chimica Acta 206, 95-105. https://doi.org/10.1016/0009-8981(92)90010-N
  64. Tsai CH, Huang HC, Liu BL, Li CI, Lu MK, Chen X, et al. (2014) Activation of N-methyl-D-aspartate receptor glycine site temporally ameliorates neuropsychiatric symptoms of P arkinson's disease with dementia. Psychiat Clin Neuros 68, 692-700. https://doi.org/10.1111/pcn.12175
  65. Vanover JC, Spry ML, Hamilton L, Wakamatsu K, Ito S and D'Orazio JA (2009) Stem cell factor rescues tyrosinase expression and pigmentation in discreet anatomic locations in albino mice. Pigment Cell Melanoma Res 22, 827-838. https://doi.org/10.1111/j.1755-148X.2009.00617.x
  66. Williams SM, Diaz CM, Macnab LT, Sullivan RK, Pow DV (2006) Immunocytochemical analysis of d-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 53, 401-411. https://doi.org/10.1002/glia.20300
  67. Wolosker H, Blackshaw S, Snyder S H (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci 96, 13409-13414. https://doi.org/10.1073/pnas.96.23.13409
  68. Yamaguchi Y, Brenner M, Hearing V J (2007) The regulation of skin pigmentation. J Biol Chem 282, 27557-27561. https://doi.org/10.1074/jbc.R700026200
  69. Yang S, Qiao H, Wen L, Zhou W, Zhang Y (2005) D-serine enhances impaired long-term potentiation in CA1 subfield of hippocampal slices from aged senescence-accelerated mouse prone/8. Neurosci Lett 379, 7-12. https://doi.org/10.1016/j.neulet.2004.12.033
  70. Yin G-Y, Zhang W-N, Shen X-J, Chen Y, He X-F (2003) Ultrastructure and molecular biological changes of chronic gastritis, gastric cancer and gastric precancerous lesions: a comparative study. World J Gastroenterol: WJG 9, 851. https://doi.org/10.3748/wjg.v9.i4.851
  71. Yin M, Ikejima K, Arteel G E, Seabra V, Bradford B U, Kono H, et al. (1998) Glycine accelerates recovery from alcohol-induced liver injury. J Pharmacol Exp Ther 286, 1014-1019.
  72. Yoshikawa T, Minamiyama Y, Ichikawa H, Takahashi S, Naito Y, Kondo M (1997) Role of lipid peroxidation and antioxidants in gastric mucosal injury induced by the hypoxanthine-xanthine oxidase system in rats. Free Radic Biol Med 23, 243-250. https://doi.org/10.1016/S0891-5849(96)00625-9
  73. You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW (2004) The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127, 1798-1808. https://doi.org/10.1053/j.gastro.2004.09.049
  74. You M, Liang X, Ajmo JM, Ness GC (2008) Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am J Physiol Gastrointest Liver Physiol 294, G892-G898. https://doi.org/10.1152/ajpgi.00575.2007
  75. Yun SM, Cho JM, Hong KS, Lee DY, Ji SD, Son JG, et al. (2017) Gastroprotective effect of mature silkworm, Bombyx mori against ethanol-induced gastric mucosal injuries in rats. J Funct Foods 39, 279-286. https://doi.org/10.1016/j.jff.2017