DOI QR코드

DOI QR Code

Maqui Berry Extract Activates Dendritic Cells Maturation by Increasing the Levels of Co-stimulatory Molecules and IL-12 Production

  • Ye Eun Lim (Department of Life Science, Immunology Research Lab, Institute of Well-Aging Medicare & CSU G-LAMP Project Group, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University) ;
  • Inae Jung (Department of Life Science, Immunology Research Lab, Institute of Well-Aging Medicare & CSU G-LAMP Project Group, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University) ;
  • Mi Eun Kim (Department of Life Science, Immunology Research Lab, Institute of Well-Aging Medicare & CSU G-LAMP Project Group, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University) ;
  • Jun Sik Lee (Department of Life Science, Immunology Research Lab, Institute of Well-Aging Medicare & CSU G-LAMP Project Group, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University)
  • 투고 : 2024.06.10
  • 심사 : 2024.06.12
  • 발행 : 2024.06.28

초록

Dendritic cells play a very important role in the immune response as antigen-presenting cells that are critical for initiating both innate and acquired immunity. They recognize, process and present foreign antigens to other key immune cells to trigger and regulate the immune response. The ability to activate these dendritic cells can be used as a treatment for various immune diseases. Maqui berry has been reported to have anticancer, antibacterial and anti-inflammatory properties. However, its effect on the activity of dendritic cells has not been studied. In this study, we investigated the efficacy of maqui berry extract in modulating dendritic cell activity. Treatment of dendritic cells with maqui berry extract induced the costimulatory molecules CD80, CD86, and MHC class I and II in a concentration-dependent manner. Furthermore, the antigen-presenting capacity of dendritic cells was inhibited, which confirms their ability to present antigens, and the production of Interleukin (IL)-12, which is important for dendritic cell activity, was increased. These results indicated that Maqui berry extract activates dendritic cells maturation by inducing the production of co-stimulatory molecules and IL-12. These results suggest that maqui berry extract may act as an effective adjuvant to enhance dendritic cell-based immune responses.

키워드

참고문헌

  1. Bao, L., C. Hao., S. Liu., L. Zhang., J. Wang., D. Wang., Y. Li. and W. Yao., "Dendritic cells trigger imbalance of Th1/Th2 cells in silica dust exposure rat model via MHC-II, CD80, CD86 and IL-12.", RSC Adv, Vol. 8, No. 46, pp, 26108-26115, 2018. https://doi.org/10.1039/C8RA03970D
  2. Crisostomo-Ayala., K. A., A. B. Sabater-Jara., C. Perez Manriquez., F. Ferreres., A. Gil-Izquierdo., M. A. Pedreno., M. Hernandez de la Torre., M. Sanchez-Olate. and D. G. Rios Leal., "Comparative Study of Metabolomic Profile and Antioxidant Content of Adult and In Vitro Leaves of Aristotelia chilensis.", Plants (Basel), Vol. 11, No. 1, 2021.
  3. Fang, P., X. Li., J. Dai., L. Cole., J. A. Camacho., Y. Zhang., Y. Ji., J. Wang., X. F. Yang. and H. Wang., "Immune cell subset differentiation and tissue inflammation.", J Hematol Oncol, Vol. 11, No. 1, p. 97, 2018.
  4. Garcia-Milla, P., R. Penalver. and G. Nieto., "A Review of the Functional Characteristics and Applications of Aristotelia chilensis (Maqui Berry), in the Food Industry.", Foods, Vol. 13, No. 6, 2024.
  5. Kim, M. K. and J. Kim., "Properties of immature and mature dendritic cells: phenotype, morphology, phagocytosis, and migration.", RSC Adv, Vol. 9, No. 20, pp. 11230-11238, 2019. https://doi.org/10.1039/C9RA00818G
  6. Leyva-Castillo, J. M., M. Das., E. Artru., J. Yoon., C. Galand. and R. S. Geha., "Mast cell-derived IL-13 downregulates IL-12 production by skin dendritic cells to inhibit the T(H)1 cell response to cutaneous antigen exposure.", J Allergy Clin Immunol, Vol. 147, No. 6, pp. 2305-2315, e2303, 2021. https://doi.org/10.1016/j.jaci.2020.11.036
  7. Li, X. Q., T. Yamazaki., T. He., M. M. Alam., J. Liu., A. L. Trivett., B. Sveinbjornsson., O. Rekdal., L. Galluzzi., J. J. Oppenheim. and D. Yang., "LTX-315 triggers anticancer immunity by inducing MyD88-dependent maturation of dendritic cells.", Front Immunol, Vol. 15, p. 1332922, 2024.
  8. Liu, J., S. Cao., S. Kim., E. Y. Chung., Y. Homma., X. Guan., V. Jimenez. and X. Ma., "Interleukin-12: an update on its immunological activities, signaling and regulation of gene expression.", Curr Immunol Rev, Vol. 1, No. 2, pp. 119-137, 2005. https://doi.org/10.2174/1573395054065115
  9. Liu, K. J., T. Y. Chao., J. Y. Chang., A. L. Cheng., H. J. Ch'ang., W. Y. Kao., Y. C. Wu., W. L. Yu., T. R. Chung. and J. Whang-Peng., "A phase I clinical study of immunotherapy for advanced colorectal cancers using carcinoembryonic antigen-pulsed dendritic cells mixed with tetanus toxoid and subsequent IL-2 treatment.", J Biomed Sci, Vol. 23, No. 1, p. 64, 2016.
  10. Mellman, I. and R. M. Steinman., "Dendritic cells: specialized and regulated antigen processing machines.", Cell, Vol. 106, No. 3, pp. 255-258, 2001. https://doi.org/10.1016/S0092-8674(01)00449-4
  11. Schon, C., R. Wacker., A. Micka., J. Steudle., S. Lang. and B. Bonnlander., "Bioavailability Study of Maqui Berry Extract in Healthy Subjects.", Nutrients, Vol. 10, No. 11, 2018.
  12. Sela, U., C. G. Park., A. Park., P. Olds., S. Wang., R. M. Steinman. and V. A. Fischetti., "Dendritic Cells Induce a Subpopulation of IL-12Rbeta2-Expressing Treg that Specifically Consumes IL-12 to Control Th1 Responses.", PLoS One, Vol. 11, No. 1, e0146412, 2016.
  13. Steinman, R. M. and Z. A. Cohn., "Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution.", J Exp Med, Vol. 137, No. 5, pp. 1142-1162, 1973. https://doi.org/10.1084/jem.137.5.1142
  14. Tait Wojno, E. D., C. A. Hunter. and J. S. Stumhofer., "The Immunobiology of the Interleukin-12 Family: Room for Discovery.", Immunity, Vol. 50, No. 4, pp. 851-870, 2019. https://doi.org/10.1016/j.immuni.2019.03.011
  15. Tong, L., P. Yue., Y. Yang., J. Huang., Z. Zeng. and W. Qiu., "Motility and Mechanical Properties of Dendritic Cells Deteriorated by Extracellular Acidosis.", Inflammation, Vol. 44, No. 2, pp. 737-745, 2021. https://doi.org/10.1007/s10753-020-01373-z
  16. Tugues, S., S. H. Burkhard., I. Ohs., M. Vrohlings., K. Nussbaum., J. Vom Berg., P. Kulig. and B. Becher., "New insights into IL-12-mediated tumor suppression." Cell Death Differ, Vol. 22, No. 2, pp. 237-246, 2015. https://doi.org/10.1038/cdd.2014.134
  17. Verhoeven, G. T., J. M. Van Haarst,. H. J. De Wit., P. J. Simons., H. C. Hoogsteden. and H. A. Drexhage., "Glucocorticoids hamper the ex vivo maturation of lung dendritic cells from their low autofluorescent precursors in the human bronchoalveolar lavage: decreases in allostimulatory capacity and expression of CD80 and CD86.", Clin Exp Immunol, Vol. 122, No. 2, pp. 232-240, 2000. https://doi.org/10.1046/j.1365-2249.2000.01354.x
  18. Wacewicz-Muczynska, M., J. Moskwa., A. Puscion-Jakubik., S. K. Naliwajko., M. Niczyporuk. and K. Socha., "Antioxidant Properties of Maqui Berry Extract (Aristotelia chilensis (Mol.) Stuntz) and Its Potential Photoprotective Role on Human Skin Fibroblasts.", Molecules, Vol. 28, No. 23, 2023.
  19. Wang, Y., Y. Xiang., V. W. Xin., X. W. Wang., X. C. Peng., X. Q. Liu., D. Wang., N. Li., J. T. Cheng., Y. N. Lyv., S. Z. Cui., Z. Ma., Q. Zhang. and H. W. Xin., "Dendritic cell biology and its role in tumor immunotherapy.", J Hematol Oncol, Vol. 13, No. 1, p. 107, 2020.
  20. Yang, Y., J. Lu., H. Liu., G. Jin., R. Bai., X. Li., D. Wang., J. Zhao., Y. Huang., K. Liu., Y. Xing. and Z. Dong., "Dendritic cells loading autologous tumor lysate promote tumor angiogenesis.", Tumour Biol, 2016.