DOI QR코드

DOI QR Code

Passive clamping driver circuit for suppressing positive and negative gate crosstalk in GaN HEMTs

  • Shiqing Qin (School of Science, Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Jiangnan University) ;
  • Tong Cao (School of Science, Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Jiangnan University) ;
  • Feiyu Chen (School of Science, Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Jiangnan University) ;
  • Yan Gu (School of Science, Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Jiangnan University) ;
  • Jiayao Ying (School of Science, Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Jiangnan University) ;
  • Weiying Qian (School of Science, Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Jiangnan University) ;
  • Naiyan Lu (School of Science, Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Jiangnan University) ;
  • Xiangyang Zhang (School of Science, Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Jiangnan University) ;
  • Guofeng Yang (School of Science, Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Jiangnan University)
  • Received : 2023.07.22
  • Accepted : 2023.12.22
  • Published : 2024.06.20

Abstract

Gallium nitride (GaN) devices switch faster than silicon devices, making them more vulnerable to significant switching oscillations. To reduce the effect of crosstalk in GaN High Electron Mobility Transistor (GaN HEMT)-based bridges, this paper introduces a passive clamp circuit to restrain gate source voltage oscillations. Utilizing resistive and capacitive diodes, as well as diodes and transistors, a bootstrap driving circuit can be established. This circuit forms a low impedance Miller current path from the driving IC to the GaN device, which decreases the impact of both positive and negative crosstalk. Employing resistive and capacitive diodes, as well as diodes and transistors, a bootstrap driving circuit can be established. This circuit creates a low impedance Miller current path from the driving IC to the GaN device, reducing the effects of the positive and negative crosstalk. This method, which mostly uses passive components, simplifies the circuit design in comparison to other passive gate driver methods. Through dual-pulse testing with a GS661008P, its capacity to suppress positive and negative crosstalk in GaN devices has been confirmed.

Keywords

Acknowledgement

This work was funded by the National Natural Science Foundation of China (No. 61974056), the Key Research and Development Program of Jiangsu Province (No. BE2020756), Suzhou Science and Technology Project (No. SZS2020313), and the Fundamental Research Funds for Central Universities (No. JUSRP22032).

References

  1. Zhu, T.H., Zhuo, F., Zhao, F.Z., et al.: Quantitative model-based false turn-on evaluation and suppression for cascode GaN devices in half-bridge applications. IEEE Trans. Power Electron. 34(10), 10166-10179 (2019)  https://doi.org/10.1109/TPEL.2018.2890680
  2. Hu, W.R., Luo, H.R., Yan, X., et al.: An accurate neural network-based consistent gate charge model for GaN HEMTs by refining intrinsic capacitances. IEEE Trans. Microw. Theory Tech.Microw. Theory Tech. 69(7), 3208-3218 (2021)  https://doi.org/10.1109/TMTT.2021.3076064
  3. Huang, X., Li, Q., Liu, Z., et al.: Analytical loss model of high voltage GaN HEMT in cascode configuration. IEEE Trans. Power Electron. 29(5), 2208-2219 (2014)  https://doi.org/10.1109/TPEL.2013.2267804
  4. Chen, J., Luo, Q.M., Huang, J., et al.: A complete switching analytical model of low-voltage eGaN HEMTs and its application in loss analysis. IEEE Trans. Ind. Electron. 67(2), 1615-1625 (2020)  https://doi.org/10.1109/TIE.2019.2891466
  5. Chen, J., Du, X., Luo, Q.M., et al.: A review of switching oscillations of wide bandgap semiconductor devices. IEEE Trans. Power Electron. 35(12), 13182-13199 (2020)  https://doi.org/10.1109/TPEL.2020.2995778
  6. Kozak, J.P., Barchowsky, A., Hontz, M.R., et al.: An analytical model for predicting Turn-ON overshoot in normally-OFF GaN HEMTs. IEEEJ. Emerg. Sel. Top. Power Electron. 8(1), 99-110 (2020)  https://doi.org/10.1109/JESTPE.2019.2947152
  7. Reusch, D., Strydom, J.: Understanding the effect of PCB layout on circuit performance in a high-frequency gallium-nitride-based point of load converter. IEEE Trans. Power Electron. 29(4), 2008-2015 (2014)  https://doi.org/10.1109/TPEL.2013.2266103
  8. Wang, K.P., Wang, L.L., Yang, X., et al.: A multiloop method for minimization of parasitic inductance in GaN-based high frequency DC-DC converter. IEEE Trans. Power Electron. 32(6), 4728-4740 (2017)  https://doi.org/10.1109/TPEL.2016.2597183
  9. Shimizu, H., Akiyama, S., Yokoyama, N., et al.: Controllability of switching speed and loss for SiC JFET/Si MOSFET cascode with external gate resistor. In: in Proc. IEEE 26th Int. Symp. Power Semicond. Devices IC's, pp. 221-224 (2014) 
  10. Chen, J., Luo, Q.M., Huang, J., et al.: Analysis and design of an RC snubber circuit to suppress false triggering oscillation for GaN devices in half-bridge circuits. IEEE Trans. Power Electron. 35(3), 2690-2704 (2020)  https://doi.org/10.1109/TPEL.2019.2927486
  11. Zhang, Z.Y., Dix, J., Wang, F., et al.: Intelligent gate drive for fast switching and crosstalk suppression of SiC devices. IEEE Trans. Power Electron. 32(12), 9319-9332 (2017)  https://doi.org/10.1109/TPEL.2017.2655496
  12. Yang, Y., Wen, Y., Gao, Y.: A novel active gate driver for improving switching performance of high-power SiC MOSFET modules. IEEE Trans. Power Electron. 34(8), 7775-7787 (2019)  https://doi.org/10.1109/TPEL.2018.2878779
  13. Yang, C.Z., Pei, Y.Q., Wang, L.L., et al.: Overvoltage and oscillation suppression circuit with switching losses optimization and clamping energy feedback for SiC MOSFET. IEEE Trans. Power Electron. 36(12), 14207-14219 (2021)  https://doi.org/10.1109/TPEL.2021.3090031
  14. Qi, Z.Y., Pei, Y.Q., Wang, L.L., et al.: An accurate datasheet-based full-characteristics analytical model of GaN HEMTs for deadtime optimization. IEEE Trans. Power Electron. 36(7), 7942-7955 (2021)  https://doi.org/10.1109/TPEL.2020.3044083
  15. Sun, B.N., Zhang, Z., Andersen, M.A.E.: A comparison review of the resonant gate driver in the silicon MOSFET and the GaN transistor application. IEEE Trans. Ind. Appl. 55(6), 7776-7786 (2019)  https://doi.org/10.1109/TIA.2019.2914193
  16. Xiong Y. H., Guo, Z. Q., Xue, Z. M., et al.: Resonant Gate Driver for High Speed GaN HMET with dV/dt Control. In: 2021 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Zhuhai, China, pp. 232-233(2021) 
  17. Shojaie, M., Elsayad, N., Moradisizkoohi, H., et al.: Design and experimental verification of a high-voltage series-stacked GaN eHEMT module for electric vehicle applications. IEEE Trans. Transp. Electrification 5(1), 31-34 (2019) https://doi.org/10.1109/TTE.2018.2888476