DOI QR코드

DOI QR Code

Temperature duty cycle characteristics of parallel IGBTs

  • Lan Peng (School of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Haihong Huang (School of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Haixin Wang (School of Electrical Engineering and Automation, Hefei University of Technology)
  • Received : 2023.05.11
  • Accepted : 2023.11.15
  • Published : 2024.06.20

Abstract

IGBT parallel connections are an effective way to increase the capacity of power electronic converters. The junction temperature balance between IGBTs is one of the key factors in the safe and stable operation of parallel IGBTs system. Therefore, it is very important to study the influence of junction temperature on the power loss of parallel IGBTs system to improve their stability. However, existing research mainly focuses on the loss of a single IGBT or the optimal operating frequency range of parallel IGBTs. It does not involve research on the optimal operating duty cycle range (ODCR) of parallel IGBTs. When IGBT devices work in the positive temperature coefficient range, the on-state loss difference caused by the junction temperature difference and the switching loss difference have different temperature characteristics. Therefore, the concept of the inflection point duty cycle (IPDC) is proposed to evaluate the trend of the junction temperature mismatch between parallel IGBTs. In this paper, an inflection point duty cycle model (IPDCM) is established to analyze the influence of circuit design parameters, IGBT device parameters, and junction temperature differences on the ODCR of parallel IGBTs. Experimental results show that the IPDCM can provide a feasible reference for the reliability, circuit design parameters, and device selection of parallel power devices.

Keywords

Acknowledgement

This work was supported by the Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China (No.U22A20225).

References

  1. Huang, H.H., et al.: Application of phase-shift PWM in EAST fast control power supply. IEEE Trans. Appl. Supercond. 20(3), 1671-1675 (2010) https://doi.org/10.1109/TASC.2009.2039470
  2. Huang, H.H., Bi, N.X., Wang, H.X.: Exploration of the voltage control mode of second-generation EAST fast control power supply. IEEE Trans. Plasma Sci. 46(5), 1684-1688 (2018) https://doi.org/10.1109/TPS.2017.2773620
  3. Kamarposhti, M.A., et al.: Improving the wind penetration level of the power systems connected to doubly fed induction generator wind farms considering voltage stability constraints. J. Renew. Sustain. Energy. 7(4), 043121 (2015)
  4. Infneon Technologies. IGBT Modules. https://www.infneon.com/cms/en/product/power/igbt/igbt-modules/fz3600r17he4p/ (2023). Accessed 11 May 2023
  5. Li, H., et al.: Effects of auxiliary-source connections in multichip power module. IEEE Trans. Power Electron. 32(10), 7816-7823 (2017) https://doi.org/10.1109/TPEL.2016.2639327
  6. Li, H., et al.: Influences of device and circuit mismatches on paralleling silicon carbide MOSFETs. IEEE Trans. Power Electron. 31(1), 621-634 (2016) https://doi.org/10.1109/TPEL.2015.2408054
  7. Beczkowski S, et al.: Switching current imbalance mitigation in power modules with parallel connected SiC MOSFETs. Proc. EPE'17 ECCE Europe. P.1-P.8 (2017)
  8. Zhao, C., et al.: A method to balance dynamic current of paralleled SiC MOSFETs with kelvin connection based on response surface model and nonlinear optimization. IEEE Trans. Power Electron. 36(2), 2068-2079 (2021) https://doi.org/10.1109/TPEL.2020.3009008
  9. Peng, C., et al.: Experimental investigations on current sharing characteristics of parallel chips inside press-pack IGBT devices. IEEE Trans. Power Electron. 37(9), 10672-10680 (2022) https://doi.org/10.1109/TPEL.2022.3164544
  10. Zeng, Z., Zhang, X., Li, X.: Layout-dominated dynamic current imbalance in multichip power module: mechanism modeling and comparative evaluation. IEEE Trans. Power Electron. 34(11), 11199-11214 (2019) https://doi.org/10.1109/TPEL.2019.2900497
  11. Wu, R., et al.: A temperature-dependent thermal model of IGBT modules suitable for circuit-level simulations. IEEE Trans. on Ind. Applicat. 52(4), 3306-3314 (2016) https://doi.org/10.1109/TIA.2016.2540614
  12. Li, H., et al.: Influence of paralleling dies and paralleling half-bridges on transient current distribution in multichip power modules. IEEE Trans. Power Electron. 33(8), 6483-6487 (2018) https://doi.org/10.1109/TPEL.2018.2797326
  13. Chen, Y., et al.: Thermal mitigation and optimization via multitier bond wire layout for IGBT modules considering multicellular electro-thermal effect. IEEE Trans. Power Electron. 37(6), 7299-7314 (2022) https://doi.org/10.1109/TPEL.2022.3140766
  14. Smet, V., et al.: Ageing and failure modes of IGBT modules in high-temperature power cycling. IEEE Trans. Ind. Electron. 58(10), 4931-4941 (2011) https://doi.org/10.1109/TIE.2011.2114313
  15. Wang, J., et al.: A novel approach to model and analyze uneven temperature distribution among multichip high-power modules and corresponding method to respecify device SOA. IEEE Trans. Power Electron. 37(4), 4626-4640 (2022) https://doi.org/10.1109/TPEL.2021.3124597
  16. Zou, G., Zhao, Z.: Research on impacts of different parameters on transient power loss of IGBT. Proc. International Conference on Electrical Machines and Systems, 490-495 (2013)
  17. Shi, B., Zhao, Z., Zhu, Y.: Piecewise analytical transient model for power switching device commutation unit. IEEE Trans. Power Electron. 34(6), 5720-5736 (2019)
  18. Xu, Y., et al.: An electrical transient model of IGBT-diode switching cell for power semiconductor loss estimation in electromagnetic transient simulation. IEEE Trans. Power Electron. 35(3), 2979-2989 (2020) https://doi.org/10.1109/TPEL.2019.2929113
  19. Hao, B., et al.: Calculation and analysis of switching losses in IGBT devices based on switching transient processes. J. Power Electron. 22(10), 1801-1811 (2022)
  20. Tang, Y., Ma, H.: Dynamic electrothermal model of paralleled IGBT modules with unbalanced stray parameters. IEEE Trans. Power Electron. 32(2), 1385-1399 (2017) https://doi.org/10.1109/TPEL.2016.2542198
  21. Arya, A., et al.: Accurate online junction temperature estimation of IGBT using infection point based updated I-V characteristics. IEEE Trans. Power Electron. 36(9), 9826-9836 (2021) https://doi.org/10.1109/TPEL.2021.3066287
  22. Li, X., et al.: Electro-Thermal Limited Switching Frequency for Parallel Diodes. Proc. IEEE Energy Conversion Congress and Exposition, 4692-4698 (2018)
  23. Li, X., et al.: Modeling and evaluating of temperature-frequency feature of paralleled PiN diodes. Proceedings of the CSEE. 38(18), 5405-5414 (2018)
  24. Yang, J., et al.: Evaluation of frequency and temperature dependence of power losses difference in parallel IGBTs. IEEE Access 8, 104074-104084 (2020) https://doi.org/10.1109/ACCESS.2020.2995971
  25. Li, Z., et al.: Sampled-data modeling and stability analysis of digitally controlled buck converter with trailing-edge and leading-edge modulations. IEEE Trans. Power Electron. 38(1), 177-194 (2023)
  26. Rajapakse, A.D., Gole, A.M., Wilson, P.L.: Electromagnetic transients simulation models for accurate representation of switching losses and thermal performance in power electronic systems. IEEE Trans. Power Delivery 20(1), 319-327 (2005) https://doi.org/10.1109/TPWRD.2004.839726
  27. Mao, P., Xie, S., Xu, Z.: Switching transients model and loss analysis of IGBT module. Proc CSEE. 30(15), 40-47 (2010)
  28. Hao, B., et al.: Modelling and solving of IGBT's transient analysis model based on the finite state machine. IET Power Electronics. 14(11), 1973-1984 (2021) https://doi.org/10.1049/pel2.12163
  29. Dastfan, A.: A new macro-model for power diodes reverse recovery. Proc. Proceedings of the 7th Wses International Conference on Power Systems: New Advances in Power Systems, 48-52 (2007)
  30. Bahman, A. S., et al.: A 3-D-Lumped Thermal Network Model for Long-Term Load Profiles Analysis in High-Power IGBT Modules. IEEE J. Emerg. Sel. Topics Power Electron. 4(3), 1050-1063 (2016) https://doi.org/10.1109/JESTPE.2016.2531631
  31. Xu, M., et al.: Lumped thermal coupling model of multichip power module enabling case temperature as reference node. IEEE Trans. Power Electron. 37(10), 11502-11506 (2022) https://doi.org/10.1109/TPEL.2022.3173653