DOI QR코드

DOI QR Code

RLS-based deadbeat predictive current control for dual three-phase segmented powered linear motors

  • Shijiong Zhou (Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Yaohua Li (Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Liming Shi (Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Keyu Guo (China North Vehicle Research Institute) ;
  • Manyi Fan (Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Jinhai Liu (Institute of Electrical Engineering, Chinese Academy of Sciences)
  • Received : 2023.02.24
  • Accepted : 2023.12.26
  • Published : 2024.06.20

Abstract

Deadbeat predictive current control (DPCC) is an effective model-based motor control method. However, due to the unbalanced inductance and parameter variations of the segmented powered linear motor stator, the conventional model of linear motors is not accurate, which ultimately affect the performance of the control. This paper proposes a novel DPCC based on the recursive least squares (RLS) method to identify the parameters of the dual three-phase segmented powered linear motor (SP-LM) model. First, the influence of unbalanced inductance caused by the segmented motor stator and parameter variations of the conventional DPCC are analyzed. Second, a discrete RLS model of the dual three-phase SP-LM is established, which is a common model for both linear induction motors (LIMs) and linear synchronous motors (LSMs). Finally, the model parameters are identified by the RLS method and the deadbeat principle is used to predict the current. The proposed method effectively eliminates the influence of unbalanced inductance and the parameter variation, improves the current control performance and reduces the thrust fluctuation. Experiments based on hardware-in-the-loop verify the proposed method.

Keywords

Acknowledgement

This work is supported by the research foundation of Institute of Electrical Engineering Chinese Academy of Sciences, (2021E1393201).

References

  1. Xu, Y., Li, S., Zou, J.: Integral sliding mode control based deadbeat predictive current control for PMSM drives with disturbance rejection. IEEE Trans. Power Electron. 37(3), 2845-2856 (2022) 
  2. Wang, L., Mishra, J., Zhu, Y., Yu, X.: An improved sliding-mode current control of induction machine in presence of voltage constraints. IEEE Trans. Ind. Inform. 16(2), 1182-1191 (2020) 
  3. Szabat, K., Orlowska-Kowalska, T., Dybkowski, M.: Indirect adaptive control of induction motor drive system with an elastic coupling. IEEE Trans. Ind. Electron. 56(10), 4038-4042 (2009) 
  4. Wang, W., Shen, H., Hou, L., Gu, H.: H robust control of permanent magnet synchronous motor based on PCHD. IEEE Access 7, 49150-49156 (2019) 
  5. Jung, J.W., Choi, H.H., Lee, D.M.: Implementation of a robust fuzzy adaptive speed tracking control system for permanent magnet synchronous motors. J. Power Electron. 12(6), 904-911 (2012) 
  6. Wang, J., Wang, F., Wang, G., Li, S., Yu, L.: Generalized proportional integral observer based robust finite control set predictive current control for induction motor systems with time-varying disturbances. IEEE Trans. Power Electron. 14(9), 1-1 (2018) 
  7. Wang, B., Dong, Z., Yu, Y., Wang, G., Xu, D.: Static-errorless deadbeat predictive current control using second-order sliding-mode disturbance observer for induction machine drives. IEEE Trans. Power Electron. 33(3), 2395-2403 (2018) 
  8. Dai, S., Wang, J., Sun, Z., Chong, E.: Deadbeat predictive current control for high-speed permanent magnet synchronous machine drives with low switching-to-fundamental frequency ratios. IEEE Trans. Ind. Electron. 69(5), 4510-4521 (2022) 
  9. Dai, S., Wang, J., Sun, Z., Chong, E.: Multiple current harmonics suppression for low-inductance PMSM drives with deadbeat predictive current control. IEEE Trans. Ind. Electron. 69(10), 9817-9826 (2022) 
  10. Liu, Z., Huang, X., Hu, Q., Li, Z., Jiang, Z., Yu, Y., Chen, Z.: A modified deadbeat predictive current control for improving dynamic performance of PMSM. IEEE Trans. Power Electron. 37(12), 14173-14185 (2022) 
  11. He, L., Wang, F., Wang, J., Rodriguez, J.: Zynq implemented Luenberger disturbance observer based predictive control scheme for PMSM drives. IEEE Trans. Power Electron. 35(2), 1770-1778 (2020) 
  12. Fan, S., Tong, C.: Model predictive current control method for PMSM drives based on an improved prediction model. J. Power Electron. 20(8), 1456-1466 (2020) 
  13. Jiang, Y., Xu, W., Mu, C., Liu, Y.: Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system. IEEE Trans. Veh. Technol.Veh. Technol. 67(1), 251-263 (2018) 
  14. Zhang, X., Zhang, L., Zhang, Y.: Model predictive current control for PMSM drives with parameter robustness improvement. IEEE Trans. Power Electron. 34(2), 1645-1657 (2019) 
  15. Khong, P.C., Leidhold, R., Mutschler, P.: Magnetic guidance of the mover in a long-primary linear motor. IEEE Trans. Ind. Appl. 47(3), 1319-1327 (2011) 
  16. Leidhold, R., Mutschler, P.: Speed sensorless control of a longstator linear synchronous motor arranged in multiple segments. IEEE Trans. Ind. Electron. 54(6), 3246-3254 (2007) 
  17. Bai, C., Yin, Z., Zhang, Y., Liu, L.: Robust predictive control for linear permanent magnet synchronous motor drives based on an augmented internal model disturbance observer. IEEE Trans. Ind. Electron. 69(10), 9771-9782 (2022) 
  18. Li, X., Zhang, S., Cui, X., Wang, Y., Zhang, C., Li, Z., Zhou, Y.: Novel deadbeat predictive current control for PMSM with parameter updating scheme. IEEE J Emerg. Sel. Top. Power Electron. 10(2), 2065-2074 (2022) 
  19. Guo, K., Li, Y., Shi, L., Chen, H., Zhou, S., Liu, J., Fan, M.: A phase-domain model of dual three-phase segmented powered linear PMSM for hardware-assisted real-time simulation. IEEE Trans. Ind. Appl. 58(4), 4511-4521 (2022) 
  20. Cai, J., Deng, Z.: Unbalanced phase inductance adaptable rotor position sensorless scheme for switched reluctance motor. IEEE Trans. Power Electron. 33(5), 4285-4292 (2018) 
  21. Jang, K.B., Kim, J.H., An, H.J., Kim, G.T.: Optimal design of auxiliary teeth to minimize unbalanced phase due to end effect of PMLSM. IEEE Trans. Magn.Magn. 47(5), 1010-1013 (2011) 
  22. Che, H.S., Levi, E., Jones, M., Hew, W.-P., Rahim, N.A.: Current control methods for an asymmetrical six-phase induction motor drive. IEEE Trans. Power Electron. 29(1), 407-417 (2014) 
  23. Hu, Y., Zhu, Z., Liu, K.: Current control for dual three-phase permanent magnet synchronous motors accounting for current unbalance and harmonics. IEEE J. Emerg. Sel. Top. Power Electron. 2(2), 272-284 (2014) 
  24. Stojic, D.M., Milinkovic, M., Veinovic, S., Klasnic, I.: Stationary frame induction motor feed forward current controller with back EMF compensation. IEEE Trans. Energy Convers. 30(4), 1356-1366 (2015)