DOI QR코드

DOI QR Code

Hardware simulator of DC-AC inverters for electric compressors

  • Yeongsu Bak (Department of Electrical Energy Engineering, Keimyung University)
  • 투고 : 2024.02.26
  • 심사 : 2024.03.26
  • 발행 : 2024.06.20

초록

This paper presents development of a hardware simulator for the DC-AC inverters of electric compressors (e-compressors). In general, early-release EVs often feature a nominal battery voltage of around 400 V. However, EVs with a 400 V battery have drawbacks such as slow battery charging speeds and limited driving distances. To overcome these drawbacks, the nominal battery voltage has recently been increased from 400 V to around 800 V. Accordingly, research on electrical components applicable to EVs with an 800 V battery has been conducted. However, research on the DC-AC inverter used in the e-compressor, as a core component of an electric air conditioning system for EVs with 800 V battery, is insufficient. Therefore, the development of a hardware simulator of DC-AC inverters for the e-compressors used in EVs with an 800 V battery is proposed in this paper. The validity of the proposed hardware simulator is verified by experimental results.

키워드

과제정보

Following are results of a study on the "Leaders in INdustry-university Cooperation 3.0" Project, supported by the Ministry of Education and National Research Foundation of Korea.

참고문헌

  1. Gan, N., Sun, Z., Zhang, Z., Xu, X., Liu, P., Qin, Z.: Data-driven fault diagnosis of lithium-ion battery overdischarge in electric vehicles. IEEE Trans. Power Electron. 37(4), 4575-4588 (2022)
  2. Li, J., Zhou, Q., Williams, H., Xu, H.: Back-to-back competitive learning mechanism for fuzzy logic based supervisory control system of hybrid electric vehicles. IEEE Trans. Ind. Electron. 67(10), 8900-8909 (2020)
  3. Bak, Y.: Dynamic characteristic improvement of integrated onboard charger using a model predictive control. Energies 15(22), 8745 (2022)
  4. Zhou, S., Chen, Z., Huang, D., Lin, T.: Model prediction and rule based energy management strategy for a plug-in hybrid electric vehicle with hybrid energy storage system. IEEE Trans. Power Electron. 36(5), 5926-5940 (2021)
  5. Pereira, D.F., Lopes, F.D.C., Watanabe, E.H.: Nonlinear model predictive control for the energy management of fuel cell hybrid electric vehicles in real time. IEEE Trans. Ind. Electron. 68(4), 3213-3223 (2021)
  6. Grazian, F., Soeiro, T.B., Bauer, P.: Voltage/current doubler converter for an efficient wireless charging of electric vehicles with 400-V and 800-V battery voltages. IEEE Trans. Ind. Electron. 70(8), 7891-7903 (2023)
  7. Aghabali, I., Bauman, J., Kollmeyer, P.J., Wang, Y., Bilgin, B., Emadi, A.: 800-V electric vehicle powertrains: review and analysis of benefits, challenges, and future trends. IEEE Trans. Transp. Electrif. 7(3), 927-948 (2021)
  8. Kin, J.-Y., Lee, B.-S., Kwon, D.-H., Lee, D.-W., Kim, J.-K.: Low voltage charging technique for electric vehicles with 800 V battery. IEEE Trans. Ind. Electron. 69(8), 7890-7896 (2022)
  9. Cittanti, D., Stella, F., Vico, E., Liu, C., Shen, J., Xiu, G., Bojoi, R.: Analysis, design, and experimental assessment of a high power density ceramic DC-link capacitor for a 800 V 550 kVA electric vehicle drive inverter. IEEE Trans. Ind. Appl. 59(6), 7078-7091 (2023)
  10. Lee, D.-W., Lee, B.-S., Ahn, J.-H., Kim, J.-Y., Kim, J.-K.: New combined OBC and LDC system for electric vehicles with 800 V battery. IEEE Trans. Ind. Electron. 69(10), 9938-9951 (2022)
  11. Langmaack, N., Tareilus, G., Bremer, G., Henke, M.: Transformerless onboard charger for electric vehicles with 800 V power system. In: Proceedings of the International Conference on Power Electronics and Drive Systems, pp 1-5 (2019)
  12. Tran, H.N., Le, T.-T., Jeong, H., Kim, S., Choi, S.: A 300 kHz, 63 kW/L ZVT DC-DC converter for 800-V fuel cell electric vehicles. IEEE Trans. Power Electron. 37(3), 2993-3006 (2022)
  13. Kolletzki, M., Denk, M., Anderson, D., Reibenweber, L., Stadler, A.: Inverter design study for a battery cooling compressor for 800 V electric vehicles with focus on efficiency and inverter volume. In: Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp 1543-1551 (2021)
  14. Seong, J., Yoon, S.W., Park, S., Kim, M., Lim, J., Jeon, J., Han, H.: Multiphysics simulation analysis and design of integrated inverter power module for electric compressor used in 48-V mild hybrid vehicles. IEEE J. Emerg. Sel. Topics Power Electron. 7(3), 1668-1676 (2019)
  15. Seong, J., Yoon, S.W., Kim, M., Lim, J., Jeon, J., Park, S., Choi, H., Park, Y., Oh, P., Kim, S. M., Kwon, T.: Integrated motor-inverter power module for electric compressor (e-compressor) in 48V mild hybrid vehicles. In: Proceedings of the IEEE Energy Conversion Congress and Exposition, pp 4659-4663 (2018)
  16. Cho, S.-K., Jung, K.-H., Choi, J.-Y.: Design optimization of interior permanent magnet synchronous motor for electric compressors of air-conditioning systems mounted on EVs and HEVs. IEEE Trans. Magnet. 54(11), 8204705 (2018)
  17. Sanjay, K., Banerjee, S., Dattatarya, K., Singh, R.R.: IoT enabled hybrid PV powered PMSM drive for E-compressor systems. In: Proceedings of the International Conference for Intelligent Technologies, pp 1-7 (2023)
  18. Tataria, H., Gross, O., Bae, C., Cunningham, B., Barnes, J.A., Deppe, J., Neubauer, J.: USABC development of 12 volt battery for start-stop application. In: Proceedings of the World Electric Vehicle Symposium and Exhibition, pp 1-8 (2013)
  19. Uno, M., Sato, M., Tada, Y., Iyasu, S., Kobayashi, N., Hayashi, Y.: Partially isolated multiport converter with automatic current balancing interleaved PWM converter and improved transformer utilization for EV batteries. IEEE Trans. Transp. Electrif. 9(1), 1273-1288 (2023)
  20. Hussein, A.A.: Adaptive artificial neural network-based models for instantaneous power estimation enhancement in electric vehicles' Li-Ion batteries. IEEE Trans. Ind. Appl. 55(1), 840-849 (2019)
  21. Yaniv, O., Mollov, S.: Synthesizing all filtered proportional-integral and PID controllers satisfying gain, phase, and sensitivity specifications. IEEE Trans. Ind. Electron. 70(3), 2939-2947 (2023)
  22. Agarwal, N.K., Prateek, M., Saxena, A., Singh, G.K.: A novel design of hybrid fuzzy poisson fractional order proportional integral derivative controller for the wind driven permanent magnet synchronous generator. IEEE Access 11, 132641-132651 (2023)
  23. Zou, C., Liu, B., Duan, S., Li, R.: Stationary frame equivalent model of proportional-integral controller in dq synchronous frame. IEEE Trans. Power Electron. 29(9), 4461-4465 (2014)