DOI QR코드

DOI QR Code

Thermally compensated discontinuous modulation strategy influence on DC-link capacitor current of CHB converters

  • Damilola Agnes Ojo (Department of Electrical Engineering, Pukyong National University) ;
  • Youngjong Ko (Department of Electrical Engineering and Industrial 4.0 Convergence Bionics Engineering, Pukyong National University)
  • 투고 : 2024.01.25
  • 심사 : 2024.04.23
  • 발행 : 2024.06.20

초록

CHB converters have been intensively considered for various applications. However, a reliability issue has emerged due to the higher number of power devices, particularly power semiconductor devices and capacitors, which have been identified as major sources of failure. Although continuous efforts have been made to enhance the reliability of power semiconductors through methods such as active thermal control, there is a noticeable absence of discussion regarding the reliability of capacitors. This is significant since capacitors are the components most prone to failure in power converters. In this study, the root mean square (RMS) current of the DC-link capacitor in a CHB converter is derived when applying thermally compensated discontinuous modulation for power semiconductors. To validate the obtained findings, the derived equations are experimentally tested using a proof-of-concept setup.

키워드

과제정보

This work was supported by a Research Grant of Pukyong National University(2022).

참고문헌

  1. Peng, X., Liu, X., Yang, G., Liu, X., Gao, L., Zhu, X.: Capacitors energy strategy based cascaded H-bridge converter for DC port failures. J. Power Electron. 19(5), 1133-1141 (2019)
  2. Lee, K.-B., Lee, J.-S., Lee, J.-H.: A fault diagnosis method in cascaded H-bridge multilevel inverter using output current analysis. J. Electr. Eng. Technol. 12(6), 2278-2288 (2017)
  3. Kumar, B.H., Lokhande, M.M., Karasani, R.R., Borghate, V.B.: Fault tolerant operation of chb multilevel inverters based on the svm technique using an auxiliary unit. J. Power Electron. 18(1), 56-69 (2018)
  4. Alemi, P., Lee, D.-C.: A generalized loss analysis algorithm of power semiconductor devices in multilevel NPC inverters. J. Electr. Eng. Technol. 9(6), 2168-2180 (2014)
  5. Buticchi, G., De Carne, G., Pereira, T., Wang, K., Gao, X., Yang, J., Ko, Y., Zou, Z., Liserre, M.: A multi-port smart transformer for green airport electrification. In: 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), pp. 1-8 (2022).
  6. Yang, Z., Sun, J., Li, S., Liao, Z., Zha, X.: Individual DC voltage balancing method at zero current mode for cascaded H-bridge based static synchronous compensator. J. Electr. Eng. Technol. 13(1), 240-249 (2018)
  7. Daoud, M., Elserougi, A., Massou, A., Bojoi, R., Abdel-Khalik, A., Ahmed, S.: Hybrid-boost modular multilevel converter-based medium-voltage multiphase induction motor drive for subsea applications. J. Power Electron. 19(3), 714-726 (2019)
  8. Dong, P., Lyu, J., Cai, X.: Modeling, analysis, and enhanced control of modular multilevel converters with asymmetric arm impedance for HVDC applications. J. Power Electron. 18(6), 1683-1696 (2018)
  9. Kuppuswamy, C., Raghavendiran, T.A.: Fpga implementation of diode clamped multilevel inverter for speed control of induction motor. J. Electr. Eng. Technol. 13(1), 362-371 (2018)
  10. Palanisamy, R., Vijayakumar, K.: A hysteresis current controller for PV-wind hybrid source fed statcom system using cascaded multilevel inverters. J. Electr. Eng. Technol. 13(1), 270-279 (2018)
  11. Kuprat, J., van der Broeck, C.H., Andresen, M., Kalker, S., Liserre, M., De Doncker, R.W.: Research on active thermal control: actual status and future trends. IEEE J. Emerg. Select. Top. Power Electron. 9(6), 6494-6506 (2021)
  12. Moghassemi, A., Rahman, S.M.I., Ozkan, G., Edrington, C.S., Zhang, Z., Chamarthi, P.K.: Power converters coolant: past, present, future, and a path toward active thermal control in electrified ship power systems. IEEE Access 11, 91620-91659 (2023)
  13. Lemmens, J., Vanassche, P., Driesen, J.: Optimal control of traction motor drives under electrothermal constraints. IEEE J. Emerg. Select. Top. Power Electron. 2(2), 249-263 (2014)
  14. Wang, H., Khambadkone, A.M., Yu, X.: Control of parallel connected power converters for low voltage microgrid-part II: dynamic electrothermal modeling. IEEE Trans. Power Electron. 25(12), 2971-2980 (2010)
  15. Ma, K., Liserre, M., Blaabjerg, F.: Reactive power influence on the thermal cycling of multi-mw wind power inverter. IEEE Trans. Ind. Appl. 49(2), 922-930 (2013)
  16. Wei, L., McGuire, J., Lukaszewski, R.A.: Analysis of pwm frequency control to improve the lifetime of pwm inverter. IEEE Trans. Ind. Appl. 47(2), 922-929 (2011)
  17. van der Broeck, C.H., Ruppert, L.A., Lorenz, R.D., De Doncker, R.W.: Methodology for active thermal cycle reduction of power electronic modules. IEEE Trans. Power Electron. 34(8), 8213-8229 (2019)
  18. Novak, M., Ferreira, V., Andresen, M., Dragicevic, T., Blaabjerg, F., Liserre, M.: FS-MPC based thermal stress balancing and reliability analysis for npc converters. IEEE Open J. Power Electron. 2, 124-137 (2021)
  19. Wang, X., Xiao, H., Ren, Y., Cheng, M.: A novel modulation strategy for split-inductor active NPC inverter with loss distribution balancing and thermal stress reduction. IEEE Trans. Power Electron. 38(6), 7296-7307 (2023)
  20. Ko, Y., Andresen, M., Buticchi, G., Liserre, M.: Thermally compensated discontinuous modulation strategy for cascaded H-bridge converters. IEEE Trans. Power Electron. 33(3), 2704-2713 (2018)
  21. Alcaide, A.M., Ko, Y., Andresen, M., Leon, J.I., Vazquez, S., Monopoli, V.G., Buticchi, G., Liserre, M., Franquelo, L.G.: Capacitor lifetime extension of interleaved DC-DC converters for multistring Pv systems. IEEE Trans. Ind. Electron. 70(5), 4854-4864 (2023)
  22. Ko, Y., Andresen, M., Buticchi, G., Liserre, M.: Power routing for cascaded H-bridge converters. IEEE Trans. Power Electron. 32(12), 9435-9446 (2017)
  23. Ko, Y., Raveendran, V., Andresen, M., Liserre, M.: Advanced discontinuous modulation for thermally compensated modular smart transformers. IEEE Trans. Power Electron. 35(3), 2445-2457 (2020)
  24. Wang, H., Liserre, M., Blaabjerg, F., de Place Rimmen, P., Jacobsen, J.B., Kvisgaard, T., Landkildehus, J.: Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J. Emerg. Select. Top. Power Electron. 2(1), 97-114 (2014)
  25. Vasan, A., Laskai, L., Ilic, M.: Defning humidity test duration for microinverter reliability assessment: a physics-of-failure approach. In: 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2336-2340 (2017)
  26. Ciappa, M.: Selected failure mechanisms of modern power modules. Microelectron. Reliab. 42(4), 653-667 (2002)
  27. Held, M., Jacob, P., Nicoletti, G., Scacco, P., Poech, M.: Fast power cycling test of igbt modules in traction application. In: Proceedings of Second International Conference on Power Electronics and Drive Systems, vol. 1, pp. 425-430 (1997)
  28. Ko, Y.J., Jedtberg, H., Buticchi, G., Liserre, M.: Analysis of DC-link current influence on temperature variation of capacitor in a wind turbine application. IEEE Trans. Power Electron. 33(4), 3441-3451 (2018)
  29. Zhang, H., Wheeler, N., Grant, D.: Switching harmonics in the DC link current in a PWM AC-DC-AC converter. In: Industry Applications Conference, 1995. Thirtieth IAS Annual Meeting, IAS'95, Conference Record of the 1995 IEEE, vol. 3, pp. 2649-2655 (1995)
  30. Gasperi, M.L.: Life prediction modeling of bus capacitors in AC variable-frequency drives. IEEE Trans. Ind. Appl. 41(6), 1430-1435 (2005)
  31. Gonzalez, L.G., Garcera, G., Figueres, E., Gonzalez, R.: Effects of the PWM carrier signals synchronization on the DC-link current in back-to-back converters. Appl. Energy 87(8), 2491-2499 (2010)
  32. Wang, H., Blaabjerg, F.: Reliability of capacitors for DC-link applications in power electronic converters; an overview. IEEE Trans. Ind. Appl. 50(5), 3569-3578 (2014)