DOI QR코드

DOI QR Code

Self-powered piezoelectric energy harvesting with ultra-low power consumption for low-amplitude ambient vibrations

  • Osama Younas (Department of Instrument Science and Engineering, Shanghai Jiaotong University) ;
  • Ping Li (School of Electronic, Information and Electrical Engineering, Shanghai Jiaotong University) ;
  • Yumei Wen (School of Electronic, Information and Electrical Engineering, Shanghai Jiaotong University)
  • Received : 2023.04.09
  • Accepted : 2024.01.06
  • Published : 2024.06.20

Abstract

The consumption of high power and an extended start-up time are some of the major issues faced by piezoelectric energy harvesting. With this in mind, a control circuit with an extremely low power consumption of a few milliwatts is designed in this paper to energize heavy loads like wireless sensor nodes. A low-duty cycled self-powered control circuit, which works only at the maximum power point, is proposed in this paper. During a cold-start, optimum operative conditions can be achieved by this circuit. Moreover, a low power threshold at the input is sufficient to start the circuit. An additional piezoelectric transducer or a DC power supply is not required to operate this designed circuit. In terms of harvesting energy, performance enhanced by 320% can be achieved by this circuit when compared to the standard energy harvesting circuit when connected to a series-synchronized switch harvesting on an inductor (SSHI) with a large storage capacitor of 150 mF. An input power of 4.42 ㎼ is enough for the circuit during cold-start and it consumes an ultra-low power of 0.3 ㎼.

Keywords

Acknowledgement

This paper is supported by the National Key Research and Development Program of China (Grant No. 2022YFB3205703) and National Natural Science Foundation of China (No. 61973217).

References

  1. T. Vijayakanth, S. Shankar, G. Finkelstein-Zuta, S. Rencus-Lazar, S. Gilead and E. Gazit, "Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels," Chemical Society Reviews, 16 August 2023.
  2. Ju, M., Dou, Z., Li, J.-W., Qiu, X., Shen, B., Zhang, D., Yao, F.-Z., Gong, W., Wang, K.: Piezoelectric materials and sensors for structural health monitoring: fundamental aspects, current status, and future perspectives. Sensors 23(01), 543 (2023)
  3. Tang, S., Lim, Y., Smith, T., Mostafa, A., Lam, C., Soh, K.: Monitoring the curing process of in-situ concrete with piezoelectric-based techniques-a practical application. Struct. Health Monit. 22(01), 518-539 (2023)
  4. Shan, G., Wang, D., Chew, J., Zhu, M.: A high-power, robust piezoelectric energy harvester for wireless sensor networks in railway applications. Sens. Actuators A Phys. 360, 114525 (2023)
  5. Narducci, D., Lorenzi, B.: Challenges and perspectives in tandem thermoelectric-Photovoltaic solar energy conversion. IEEE Trans. Nanotechnol. 15(03), 348-355 (2016)
  6. Madruga, S., Mendoza, C.: Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect. Appl. Energy 306, 117966 (2022)
  7. Zhou, W., Zuo, L.: A self-powered piezoelectric vibration control system with switch pre-charged inductor (SPCI) method. IEEE/ASME Trans. Mechatron. 20(02), 773-781 (2015)
  8. Xia, H., Xia, Y., Ye, Y.: Simultaneous wireless strain sensing and energy harvesting from multiple piezo-patches for structural health monitoring applications. IEEE Trans. Indust. Electron. 66(10), 8235-8243 (2019)
  9. Silva, T., De, M.: Self-powered active control of elastic and aeroelastic oscillations using piezoelectric material. J. Intell. Mater. Syst. Struct. 28(15), 2023-2035 (2017)
  10. Wu, Y., Qiu, J., Zhou, S.: A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl. Energy 231, 600-614 (2018)
  11. Li, P., Wen, Y., Yin, W., Wu, H.: An upconversion management circuit for low-frequency vibrating energy harvesting. IEEE Trans. Indust. Electron. 61(07), 3349-3358 (2014)
  12. Kong, N.A.H.D.: Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking. IEEE Trans. Power Electron. 27(05), 2298-2308 (2012)
  13. Badel, A., Guyomar, D., Lefeuvre, E., Richard, C.: Piezoelectric energy harvesting using a synchronized switch technique. J. Intell. Mater. Syst. Struct. 17(8/9), 831-839 (2006)
  14. Lefeuvre, E., Badel, A., Richard, C., Petit, L., Guyomar, D.: A comparison between several vibration powered piezoelectric generators for standalone systems. Sens. Actuators A 126(02), 405-416 (2006)
  15. Lallart, M., Garbuio, L., Petit, L., Richard, C., Guyomar, D.: Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(10), 2119-2130 (2008)
  16. Shen, H., Qiu, J., Ji, H., Zhu, K., Balsi, M.: "Enhanced synchronized switch harvesting: a new energy harvesting scheme for efcient energy extraction. Smart Mater. Struct. 19(11), 115017 (2010)
  17. Eltamaly, A.A.A.K.: A novel selfpowerd SSHI circuit for piezoelectric energy harvester. IEEE Trans. Power Electron. 32(10), 7663-7673 (2017)
  18. Wu, L., Do, X., Lee, S., Ha, D.: A self-powered and optimal SSHI circuit integrated with an active rectifier for piezoelectric energy harvesting. IEEE Trans. Circuits Syst. I Regul. Pap. 64(03), 537-549 (2017)
  19. Chew, Z., Zhu, M.: Adaptive maximum power point finding using direct VOC/2 tracking method with microwatt power consumption for energy harvesting. IEEE Trans. Power Electron. 33(09), 8164-8173 (2018)
  20. Du, S., Amaratunga, G., Seshia, A.: A coldstartup SSHI rectifier for piezoelectric energy harvesters with increased open-circuit voltage. IEEE Trans. Power Electron. 34(01), 263-274 (2019)
  21. Shen, H., Ji, H., Qiu, J., Bian, Y., Liu, D.: Adaptive synchronized switch harvesting: a new piezoelectric energy harvesting scheme for wideband vibrations. Sens. Actuators A 226, 21-36 (2015)
  22. Ottman, G., Hofmann, H., Bhatt, A., Lesieutre, G.: Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 17, 669-676 (2002)
  23. Liu, L., Pang, Y., Yuan, W., Zhu, Z., Yang, Y.: A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier. J. Semicond. 39(04), 59-69 (2018)
  24. S. Xi, W. Li, J. Guo and J. Liang, A self-powered piezoelectric energy harvesting interface circuit based on adaptive SSHI with fully integrated switch control, In IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020
  25. Du, S., Jia, Y., Do, C., Seshia, A.: An efcient SSHI interface with increased input range for piezoelectric energy harvesting under variable conditions. IEEE J. Solid-State Circuits 51(11), 2729-2742 (2016)