
267

실천공학 교수법

J. Pract. Eng. Educ. 16(3), 267-274, 2024

Creating a Standardized Environment for Efficient Learning
Management using GitHub Codespaces and GitHub Classroom

Aaron Daniel Snowberger1, Kangsoo You2*
1Department of Computer Education, Jeonju National University of Education, Jeonju 55101, Korea
2School of Liberal Arts, Jeonju University, Jeonju 55069, Korea

pISSN: 2288-405X eISSN: 2288-4068http://JPEE.org

[Abstract]

One challenge with teaching practical programming classes is the standardization of development tools on student computers.
This is particularly true when a complicated setup process is required before beginning to code, or in remote classes, such as those
necessitated by the COVID-19 pandemic, where the instructor cannot provide individual troubleshooting assistance. In such cases,
students who encounter problems during the setup process may give up on the class altogether before even beginning to code.
Therefore, this paper recommends using GitHub Codespaces as a tool for implementing standardized student development environ-
ments from day one. Codespaces provides Docker containers that an instructor can configure in such a way as to enable students to
practice installing various coding tools within a controlled space, while also providing a language-specific, fully optimized devel-
opment environment. In addition, Codespaces may be used more effectively in collaboration with GitHub Classroom, which helps
instructors manage both the starter code and coding environment in which students work. In this paper, we compare two semesters of
university Node.JS programming classes that utilized different development environments: one localized on student computers, the
other containerized in Codespaces online. Then, we discuss how GitHub Codespaces and GitHub Classroom can be used to increase
the effectiveness of practical programming classes while also increasing student engagement and programming confidence in class.

Key Words: GitHub classroom, GitHub codespaces, Docker containers, Integrated development environment, Programming education

Copyright © Korean Institute for Practical Engineering Education

I. Introduction

One of the challenges in teaching practical programming
courses is the installation and standardization of
development tools across various student devices. While
many schools provide computer labs for classroom use with
software pre-installed, students also use personal devices
in the computer lab and for homework and need to install
the software individually. Helping students get their coding
environments configured often requires dedicating at least

one or two lectures at the beginning of the semester on
setup and troubleshooting. However, different installation
steps may be required for multiple student devices running
different operating systems.

On Windows, for example, many program installers don’t
automatically update the $PATH environment variable,
which must then be updated manually in the Windows
settings. Mac and Linux also may recommend using
command line tools for program installation. However,
none of these processes are usually easy for beginner

실천공학교육

http://dx.doi.org/10.14702/JPEE.2024.267

This is an Open Access article distributed under the
terms of the Creative Commons Attribution Non-
Commercial License (http://creativecommons.org/

licenses/by-nc/3.0/) which permits unrestricted non-commercial use,
distribution, and reproduction in any medium, provided the original work
is properly cited.

Received 9 May 2024; Revised 29 May 2024
Accepted 21 June 2024

*Corresponding Author
E-mail: gsyou@jj.ac.kr

268

J. Pract. Eng. Educ. 16(3), 267-274, 2024

http://dx.doi.org/10.14702/JPEE.2024.267

ments has appeared in research literature from at least 2010
[3-5], when virtual machines (VMs) started being used in
programming classes. In particular, Harvard university’s
introductory programming class CS50 was one of the first
to take this approach [5]. CS50 has undergone significant
changes to optimize the standardized student coding
experience [6-8], from an on-campus cluster in 2007, to
an off-campus cloud in 2008, to client-side VMs like VM
Player in 2011, to containerized environments based on
Docker in 2015, and finally to GitHub Codespaces when it
was launched in 2021. This most recent implementation of
CS50, including VS Code extensions and the CS50 Docker
image, cs50/codespace, is currently available at https://
cs50.dev/. Accessing the CS50 link requires a GitHub login,
after which a customized CS50 Codespace is created within
the logged in account, as shown in Fig. 1.

Although the CS50 Codespace provides a standardized
container-based coding environment and plugins required
for the Harvard class, it is lacking assignment starter code.
This is where GitHub Classroom can help. Classroom was
launched in 2015 but began to take prominence during the
COVID-19 pandemic. This online classroom management
platform helps instructors distribute, collect, manage, and
organize student repositories that include starter code and
a customized Codespace for each assignment. Student
repositories are forked into a student’s account from a
template repository in the instructor’s account and linked

programmers to understand, and the complexity of these
processes often increases the amount of time an instructor
spends helping students simply get ready for programming.
Therefore, standardizing the entire installation process
within a virtual or containerized programming environment
provides the best method to quickly get up and running. To
that end, this paper recommends GitHub Codespaces [1] (i.e.
Codespaces), a configurable Docker-based containerized
programming environment that can be customized to a
specific class. In addition, Codespaces can be utilized very
effectively with GitHub Classroom [2] (i.e. Classroom), an
assignment repository management platform, which can be
used to distribute and collect student assignments in GitHub.

In this paper, we describe how Codespaces can be used in
collaboration with Classroom to increase the effectiveness of
practical programming education while increasing student
engagement and programming confidence in class. We also
compare the use of the fully online environment provided
by Codespaces that includes an online implementation of
both git and Visual Studio Code (VS Code) with a localized
environment in which both a git client and a local Integrated
Development Environment (IDE) must be installed.

II. Related Studies

The concern about standardized student coding environ-

Fig. 1. The CS50 Codespace with a handful of custom VS Code extensions to support the class.

269 http://JPEE.org

Creating a Standardized Environment for Efficient Learning Management using GitHub Codespaces and GitHub Classroom

per class, around 1,200 repositories in total. Various pros
and cons to both the online Codespaces environment and
the localized development environment became apparent as
each class progressed, and these will be analyzed in greater
detail below. To begin with, Table 1 provides an overview of
the two different development environments and software
required for each.

A. Codespaces Coding Environment

As the above table indicates, the localized development
environment requires the installation of multiple software
tools, whereas the Codespaces environment requires no
setup apart from logging in to access the Codespace. Both
GitHub Free and GitHub Pro accounts have a limited
amount of free storage and core usage hours per month.
Free accounts receive 15 GB of storage and 120 core hours
per month, and Pro accounts receive 20 GB of storage and
180 core hours per month [12]. Verified GitHub Education
accounts (using a school email address) are effectively
upgraded to Pro accounts, providing the larger Codespaces
capacity. However, both Free and Pro options provide
more than enough storage and usage hours for students
attending a three-hour per week lesson, including homework
time, especially given that the entire lecture period is not
spent in Codepsaces. In addition, instructors with verified
Education accounts can enable Codespaces for their GitHub
organization and select Codespaces as a supported editor for
student assignments in Classroom [13].

In the Codespaces classes, when a student accesses
a Classroom link and forks the template repository, the
green [Code] button to the upper-right of the repository
provides an option to “Create a new Codespace” in that
repository. By default, Codespaces are limited to two

in the admin view of Classroom. In this case, the only thing
an instructor needs to do, apart from creating the template
repository, is share the Classroom link that will fork the
repository. An effective method for sharing the assignment
link is described in another paper [9] that describes how
Classroom can be used with GitHub Pages [10] to create a
simple classroom website for student access to lecture notes
and assignments.

III. Comparison of Codespaces and Local
Development Environment

In this research, GitHub Classroom was used in four
university classes, over two semesters, as a means to
distribute and collect students programming assignments.
In two of the classes, GitHub Codespaces was used to
support a Node.JS web backend programming environment.
Therefore, all programming and git commits were handled
online in the Codespace itself. In the other two classes,
a local Node.JS programming environment was created
on student computers. This necessitated the installation
of git, Node.JS and related tools, and an IDE, such as the
Desktop edition of VS Code. In addition, in the localized
environment classes, GitHub Desktop [11] was installed
to help students download starter code, and reupload their
assignment submissions. This was done to avoid conducting
additional lectures on the git Command Line Interface (CLI).

Over the course of a semester, students completed a total
of 15 programming assignments. These included 12 regular
programming assignments, a final project, a midterm test,
and a final test. As there were more than 25 students in each
class, by the end of each semester, Classroom had distributed
and was managing almost 300 separate student repositories

Table 1. Overview of software required for Node.JS backend development in both Codespaces and a localized development envi-
ronment

Software Codespaces online environment Localized environment

Version Control git (built-in) git (local installation) + GitHub Desktop

JavaScript Runtime Environment Node.JS (built-in) Node.JS (local installation)

Database MongoDB Atlas (online) MongoDB Compass + MongoDB Shell

IDE VS Code (built-in) VS Code (local installation)

Terminal VS Code’s built-in Terminal tool VS Code’s built-in Terminal tool

270

J. Pract. Eng. Educ. 16(3), 267-274, 2024

http://dx.doi.org/10.14702/JPEE.2024.267

B. Localized Coding Environment

In the local environment classes, with the exception of
MongoDB Compass and MongoDB Shell, all the programs
listed in Table 1 needed to be installed at the beginning of
the class. This installation process, including an overview
of assignment access and submission with GitHub Desktop,
required an additional lecture. When MongoDB Compass
and MongoDB Shell were installed halfway through the
course, a second additional half-lecture was required.

When accessing a Classroom link to fork the template
repository, students in the localized environment selected
the “Download with GitHub Desktop” option in green
[Code] button to the upper-right of the repository. Students
need to authenticate with GitHub Desktop before
downloading or resubmitting (uploading) assignment
files. The process is straightforward on personal devices,
but on shared computers, merge conflicts and accidentally
overwriting another student’s code overwriting are always
possibilities. To avoid this, students must first logout of the
previous account, and then login to their personal account,
before accessing their assignment code. Additionally, it is
recommended to use two separate download directories on
the local computer for each student to avoid merge conflicts
or overwriting another student’s localized code. Such issues

active instances in a Free or Pro account at a time. These
instances are automatically powered down after 30 minutes
and automatically deleted after 30 days [14] of inactivity,
although both settings can be adjusted in an account’s
personal settings page. However, it is good practice to
remember to power down the Codespace at the end of each
class to avoid overrunning the free capacity limits.

The configuration of a Codespace is managed with a
.devcontainer file which can be customized to suit
a given starter code template or coding environment. For
example, various features like JSHint and extensions like
MongoDB can be pre-installed in the environment, and
the process of running npm install after Codespace
creation can be automated in the .devcontainer file.
Fig. 2 displays a sample of this type of configuration file.

A .devcontainer file like the one shown above is
not necessary for the creation of a Codespace. However,
it does provide additional environment customization
features like those shown in the CS50 Codespaces example
in Fig. 1. In this study, a customized .devcontainer file
was not created and each student Codespace was run with
the default settings. In the case of using MongoDB, the
cloud-based MongoDB Atlas [15] was used instead of the
local installation of MongoDB Compass, which requires
additional setup if attempting to access it from Codespaces.

Fig. 2. A newly created .devcontainer file that contains standardized environment setup commands, including the MongoDB
extension, JSHint feature, and npm install postCreateCommand.

271 http://JPEE.org

Creating a Standardized Environment for Efficient Learning Management using GitHub Codespaces and GitHub Classroom

local installation of VS Code does not track file changes,
but rather GitHub Desktop does. After completion of a
coding assignment, students enter a commit message in
GitHub Desktop and push the code back to the assignment
repository.

 When grading assignments, instructors have two options
for running student code. The first option is to open the
assignment code in a Codespace. Assignments created in
the student Codespaces environments will work properly
when accessed by the instructor in the same way. However,
code that was created in the localized environment
may contain localhost web server links and may not
work properly in a Codespace. The second option is for
an instructor to install the GitHub CLI and the GitHub
Classroom CLI Extension to use the Classroom download
link available in each assignment page. Running the CLI
code provided by the Classroom download link, shown in
Fig. 3, will automatically download all student repositories
for that assignment into the folder the command is run
from. The same is true for both Codespaces and localized
environments, and the code from both environments should
function properly in the instructor’s localized environment.

IV. Evaluation and Analysis

Various pros and cons became apparent when teaching

will be addressed again in the Evalution and Analysis section
that follows.

C. GitHub Classroom for Assignment Access and
Grading

In both the Codespaces environment classes and the
localized environment classes, student assignments were
managed by linking student GitHub account IDs with their
names and student IDs from a manually input Class Roster
provided by the university. In both types of classes, students
accessed their assignments in the same way, with a “fork
repository” link. These links need shared with students, and
can be done easily with a class website built with GitHub
Pages [9]. However, assignment submission and teacher
grading are handled outside of Classroom.

When submitting assignments in the Codespaces classes,
the implementation of git in the Codespaces VS Code IDE
automatically tracks all changes that are made to the code.
Deleted files and lines of code are marked in red, modified
files are marked in yellow, and newly created files and
folders are marked in green. After completion of a coding
assignment, the git icon in the left sidebar highlights the
number of changed files. When students click the icon,
they enter a commit message and push the code back
to the assignment repository. Submitting assignments
from the localized environment is similar, except that the

Fig. 3. A GitHub Classroom CLI student repository download link.

272

J. Pract. Eng. Educ. 16(3), 267-274, 2024

http://dx.doi.org/10.14702/JPEE.2024.267

student assignment commits and submissions are handled
in their individual Codespaces, so merge conflicts and
accidental code overwrites are exceedingly rare. Even in
such cases that such a problem occurs, it is only a merge
conflict or code overwrite with the student’s own code, not
someone else’s.

Third, a possible advantage to the localized coding
environment classes is that because students had already
struggled through the installation and setup process for each
required technology, offboarding them to their own devices
after the class concluded was mostly unnecessary. However,
students using Codespaces did not already have experience
installing and setting up localized versions of the programs,
and were ill-prepared to do so at the end of the course. In any
case, Codespaces students are still able to continue coding in
Codespaces after the class concludes, so long as they don’t
exceed their Codespace capacity. Or, if they desire to learn
how to set things up on their own devices, a few well-written
online tutorials should be enough to help them do so. Even
so, it may be beneficial at the end of the course to provide
Codespaces students an additional video lecture or a list of
curated tutorial links to help them setup their own devices if
so desired.

V. Conclusion

In this paper, two semesters of four university level
Node.JS backend programming classes were compared.
Two classes used a localized coding environment that
required an additional almost two class lectures to setup and
troubleshoot. Additionally, git merge conflicts and accidental
overwriting of other students’ code on shared devices were
other downsides to this approach. The second two classes
used a standardized, containerized, cloud-based Codespaces
environment. In these classes, two additional lectures of
course material were able to be covered due to the reduced
amount of necessary setup and troubleshooting time.
Additionally, student feedback for Codespaces was quite
positive, with most students expressing a greater enjoyment
and confidence in coding when less technical issues arose.

In conclusion, Codespaces presents an effective method
to create standardized, accessible-from-anywhere, cloud-

courses using both the Codespaces and localized environ-
ments. These will be explained in more detail below,
but can largely be divided into technical problems and
troubleshooting, assignment submissions, and offboarding
students to their own devices at the conclusion of the class.

First, environment-based technical problems and
troubleshooting were greatly reduced in the Codespaces
environments compared to the localized environments. In
localized environments, for example, various installation
problems arose with nearly every new program installation.
Such problems included students downloading the wrong
installer, the wrong version number, or an archive file instead
of the installer; students selecting the wrong settings during
the installation process, which required a reinstall or manual
settings adjustment; installer programs failing to update the
Windows $PATH variable; and students failing to run the
correct CLI commands after installation, for example to run
the MongoDB server or install NPM packages. Additionally,
in the localized environment classes, an additional lecture
was required at the beginning of the semester just to set up
the initial coding environment.

On the other hand, in Codespaces, all required program
installations, versions numbers, and post create commands
can be set by the instructor in advance with either the default
Codespace settings or a .devcontainer file. This reduces
the confusion and setup time for students, and more course
material can be covered. In the Codespaces classes, an
additional two lectures of course material was able to be
covered compared to the localized environment classes.

Second, assignment access and submission in the
localized environment classes quickly became a challenge
when two students used the same computer, such as in
morning and afternoon classes. For example, the morning
students usually had no trouble accessing and submitting
assignments, but if the afternoon students forgot to logout
of GitHub Desktop and re-login with their own accounts,
merge conflicts or accidental overwriting of the previous
student’s code became common occurrences. In many
cases, students using shared computers opted to not share
the computer. In other words, if a morning student used the
computer lab computer, the afternoon student chose to bring
their own device, and vice versa.

On the other hand, in the Codespaces environment, all

273 http://JPEE.org

Creating a Standardized Environment for Efficient Learning Management using GitHub Codespaces and GitHub Classroom

[7] D. Malan, “Standardizing Students’ Programming Envi-
ronments with Docker Containers: Using Visual Studio
Code in the Cloud with GitHub Codespaces,” in Proceed-
ings of the 27th ACM Conference on on Innovation and
Technology in Computer Science Education, vol. 2, pp.
599-600, 2022. https://doi.org/10.1145/3502717.3532164.

[8] D. Malan, J. Carter, R. X. Liu, and C. Zenke, “Providing
Students with Standardized, Cloud-Based Programming
Environments at Term’s Start (for Free).” in Proceedings
of the 54th ACM Technical Symposium on Computer Sci-
ence Education, vol. 2, pp. 1183, March 2023. https://doi.
org/10.1145/3545947.3569611.

[9] A. Snowberger and C. H. Lee, “A workflow for practi-
cal programming class management using github pages
and github classroom,” Journal of Practical Engineering
Education, vol. 15, no. 2, pp. 331-339, 2023. https://doi.
org/10.14702/JPEE.2023.331.

[10] GitHub Pages, https://pages.github.com.
[11] GitHub Desktop, https://desktop.github.com.
[12] GitHub Docs, “About Billing for GitHub Codespaces,”

Accessed June 20, 2024. https://docs.github.com/en/
billing/managing-billing-for-github-codespaces/about-
billing-for-github-codespaces.

[13] GitHub Docs, “Using GitHub Codespaces with GitHub
Classroom,” Accessed June 20, 2024. https://docs.github.
com/en/education/manage-coursework-with-github-
classroom/integrate-github-classroom-with-an-ide/using-
github-codespaces-with-github-classroom.

[14] GitHub Docs, “Understanding the Codespace Lifecycle,”
Accessed June 20, 2024. https://docs.github.com/en/
codespaces/getting-started/understanding-the-codespace-
lifecycle.

[15] MongoDB Atlas, https://www.mongodb.com/products/
platform/atlas-database.

based coding environments easily on a per-assignment basis.
This reduces difficulties for both students and teachers, it
enables teachers to cover more relevant course material, and
it bolsters student engagement and enjoyment in the class,
as well as confidence in coding. At the same time, GitHub
Classroom is an effective tool to distribute Codespace
template starter code to students, and also help teachers
better organize and grade assignment submissions. In this
study, GitHub Classroom was used to manage over 1,200
student assignment repositories containing submissions for
15 different assignments in each class.

References

[1] GitHub Codespaces, https://github.com/features/codespaces.
[2] GitHub Classroom, https://classroom.github.com.
[3] O. Laadan, J. Nieh, and N. Viennot, “Teaching operating

systems using virtual appliances and distributed version
control,” in Proceedings of the 41st ACM Technical Sym-
posium on Computer Science Education, pp. 480-484, 2010.
https://doi.org/10.1145/1734263.1734427.

[4] D. Malan, “Moving CS50 into the cloud,” 2010, in 15th
Annual Conference of the Northeast Region of the Con-
sortium for Computing Sciences in Colleges, 2010. https://
www.researchgate.net/publication/42246066_Moving_
CS50_into_the_Cloud.

[5] D. Malan, “Reinventing CS50,” in Proceedings of the 41st
ACM Technical Symposium on Computer Science Education,
pp. 152-156, 2010. https://doi.org/10.1145/1734263.1734316.

[6] D. Malan, “Containerizing CS50: Standardizing Stu-
dents’ Programming Environments,” in Proceedings of
the 2024 Innovation and Technology in Computer Science
Education V. 1 (ITiCSE 2024), July 8-10, 2024, Milan,
Italy. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3649217.3653567.

274

J. Pract. Eng. Educ. 16(3), 267-274, 2024

http://dx.doi.org/10.14702/JPEE.2024.267

Aaron Daniel Snowberger_Regular Member

2006 : University of Wyoming, USA, Computer Science, B.S. degree

2011 : Full Sail University, USA, Media Design, M.F.A. degree

2024 : Hanbat National University, Korea, Information & Communications Engineering, Ph.D.

2010 ~ 2023 : Jeonju University, School of Liberal Arts, Professor

2023 ~ Present : Jeonju National University of Education, Dept. of Computer Education, Lecturer

<Research interests> Computer Vision, Natural Language Processing, Image Processing, Machine Learning, and

Software Education

Kangsoo You_Regular Member

August 2005：Jeonbuk National University, Dept. of Image Engineering, Ph.D.

March 1996 ~ August 2006 : Jeonju University, School of Liberal Arts, Visiting professor

September 2006 ~ Present : Jeonju University, School of Liberal Arts, Professor

<Research interests> Image Processing, Computer Education, SW/AI Education, Data Science Education, Robot

Utilization Education

