Acknowledgement
This research was supported by the Useful Dinoflagellate program of Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) and the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2021M3I6A1091272; 2021R1A2C1093379; RS2023-00291696) award to HJJ.
References
- Abu-Shamleh, A. & Najjar, Y. S. H. 2020. Optimization of mechanical harvesting of microalgae by centrifugation for biofuels production. Biomass Bioenergy 143:105877.doi.org/10.1016/j.biombioe.2020.105877
- Anderson, R. A. 2005. Algal culturing techniques. Elsevier, Oxford, 578
- Atalah, E., Cruz, C. M. H., Izquierdo, M. S., Rosenlund, G., Caballero, M. J., Valencia, A., et al. 2007. Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture 270:178-185. doi.org/10.1016/j.aquaculture.2007.04.009
- Barclay, W., Weaver, C., Metz, J. & Hansen, J. 2010. Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In Cohen, Z. & Ratledge, C. (Eds.) Single Cell Oils: Microbial and Algal Oils. AOCS Press, Champaign, IL, pp. 75-96.
- Borowitzka, M. A. & Vonshak, A. 2017. Scaling up microalgal cultures to commercial scale. Eur. J. Phycol. 52:407-418. doi.org/10.1080/09670262.2017.1365177
- Buchheim, M. A., Silver, A., Johnson, H., Portman, R. & Toomey, M. B. 2023. The description of Haematococcus privus sp. nov. (Chlorophyceae, Chlamydomonadales) from North America. Algae 38:1-22. doi.org/10.4490/algae.2023.38.3.9
- Coats, D. W. 1999. Parasitic life styles of marine dinoflagellates. J. Eukaryot. Microbiol. 46:402-409. doi.org/10.1111/j.1550-7408.1999.tb04620.x
- Cuellar-Bermudez, S. P., Kilimtzidi, E., Devaere, J., Goiris, K., Gonzalez-Fernandz, C., Wattiez, R., et al. 2020. Harvesting of Arthrospira platensis with helicoidal and straight trichomes using filtration and centrifugation. Sep. Sci. Technol. 55:2381-2390. doi.org/10.1080/01496395.2019.1624573
- Dassey, A. J. & Theegala, C. S. 2013. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour. Technol. 128:241-245. doi.org/10.1016/j.biortech.2012.10.061
- Ding, N., Li, C., Wang, T., Guo, M., Mohsin, A. & Zhang, S. 2021. Evaluation of an enclosed air-lift photobioreactor (ALPBR) for biomass and lipid biosynthesis of microalgal cells grown under fluid-induced shear stress. Biotechnol. Biotechnol. Equip. 35:139-149. doi.org/10.1080/13102818.2020.1856717
- Doughman, S. D., Krupanidhi, S. & Sanjeevi, C. B. 2007. Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Curr. Diabetes Rev. 3:198-203. doi.org/10.2174/157339907781368968
- Figueras, M., Olivan, M., Busquets, S., Lopez-Soriano, F. J. & Argiles, J. M. 2011. Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: improvement of the inflammatory status. Obesity 19:362-369. doi.org/10.1038/oby.2010.194
- Fuentes-Grunewald, C., Garces, E., Alacid, E., Sampedro, N., Rossi, S. & Camp, J. 2012. Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters. J. Ind. Microbiol. Biotechnol. 39:207-216. doi.org/10.1007/s10295-011-1016-6
- Fuentes-Grunewald, C., Garces, E., Rossi, S. & Camp, J. 2009. Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production. J. Ind. Microbiol. Biotechnol. 36:1215-1224. doi.org/10.1007/s10295-009-0602-3
- Garces, R. & Mancha, M. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 211:139-143. doi.org/10.1006/abio.1993.1244
- Grima, E. M., Belarbi, E.-H., Fernandez, F. G. A., Medina, A. R. & Chisti, Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20:491-515. doi.org/10.1016/S0734-9750(02)00050-2
- Gudin, C. & Thepenier, C. 1986. Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Processes 6:73-110.
- Guillard, R. R. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. doi.org/10.1139/m62-029
- Han, F., Pei, H., Hu, W., Song, M., Ma, G. & Pei, R. 2015. Optimization and lipid production enhancement of microalgae culture by efficiently changing the conditions along with the growth-state. Energy Convers. Manag. 90:315-322. doi.org/10.1016/j.enconman.2014.11.032
- Harris, W. S. 2007. Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol. Res. 55:217-223. doi.org/10.1016/j.phrs.2007.01.013
- Heasman, M., Diemar, J., O'connor, W., Sushames, T. & Foul-kes, L. 2000. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs: a summary. Aquac. Res. 31:637-659. doi.org/10.1046/j.1365-2109.2000.318492.x
- Heggeset, T. M. B., Ertesvag, H., Liu, B., Ellingsen, T. E., Vadstein, O. & Aasen, I. M. 2019. Lipid and DHA-production in Aurantiochytrium sp.: responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes. Sci. Rep. 9:19470. doi.org/10.1038/s41598-019-55902-4
- Hodaifa, G., Martinez, M. E., Orpez, R. & Sanchez, S. 2010. Influence of hydrodynamic stress in the growth of Scenedesmus obliquus using a culture medium based on olive-mill wastewater. Chem. Eng. Process. Process Intensif. 49:1161-1168. doi.org/10.1016/j.cep.2010.08.017
- Hwang, D. F. & Lu, Y. H. 2000. Influence of environmental and nutritional factors on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. Toxicon 38:1491-1503. doi.org/10.1016/S0041-0101(00)00080-5
- Jang, S. H., Jeong, H. J. & Kwon, J. E. 2017. High contents of eicosapentaenoic acid and docosahexaenoic acid in the mixotrophic dinoflagellate Paragymnodinium shiwhaense and identification of putative omega-3 biosynthetic genes. Algal Res. 25:525-537. doi.org/10.1016/j.algal.2017.06.020
- Japar, A. S., Azis, N. M., Takriff, M. S. & Yasin, N. H. M. 2017. Application of different techniques to harvest microalgae. Trans. Sci. Technol. 4:98-108.
- Jeong, H. J., Kang, H. C., Lim, A. S., Jang, S. H., Lee, K., Lee, S. Y., et al. 2021. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 7:eabe4214. doi.org/10.1126/sciadv.abe4214
- Jeong, H. J. & Lim, A. S. 2020. Method and system for continuous mass culture for mixotrophic dinoflagellates. Patent no. KR102064718B1. Korean Intellectual Property Office, Daejeon.
- Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., et al. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. 109:12604-12609. doi.org/10.1073/pnas.1204302109
- Jiang, J.-Q., Graham, N. J. D. & Harward, C. 1993. Comparison of polyferric sulphate with other coagulants for the removal of algae and algae-derived organic matter. Water Sci. Technol. 27:221-230. doi.org/10.2166/wst.1993.0280
- Jiang, Y. & Chen, F. 2000. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. J. Am. Oil Chem. Soc. 77:613-617. doi.org/10.1007/s11746-000-0099-0
- Jiang, Y., Chen, F. & Liang, S.-Z. 1999. Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem. 34:633-637. doi.org/10.1016/S0032-9592(98)00134-4
- Kang, H. C., Jeong, H. J., Ok, J. H., Lim, A. S., Lee, K., You, J. H., et al. 2023. Food web structure for high carbon retention in marine plankton communities. Sci. Adv. 9:eadk0842. doi.org/10.1126/sciadv.adk0842
- Kang, N. S., Jeong, H. J., Moestrup, O., Lee, S. Y., Lim, A. S., Jang, T. Y., et al. 2014. Gymnodinium smaydae n. sp., a new planktonic phototrophic dinoflagellate from the coastal waters of western Korea: morphology and molecular characterization. J. Eukaryote. Microbiol. 61:182-203. doi.org/10.1111/jeu.12098
- Kim, K., Shin, H., Moon, M., Ryu, B.-G., Han, J.-I., Yang, J.-W., et al. 2015. Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101. Bioresour. Technol. 198:828-835. doi.org/10.1016/j.biortech.2015.09.103
- Koletzko, B., Lien, E., Agostoni, C., Bohles, H., Campoy, C., Cetin, I., et al. 2008. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. doi.org/10.1515/JPM.2008.001
- Krishnamurthy, C. K. B. & Kristrom, B. 2015. A cross-country analysis of residential electricity demand in 11 OECD-countries. Resour. Energy Econ. 39:68-88. doi.org/10.1016/j.reseneeco.2014.12.002
- Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J.-H., et al. 2014. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125. doi.org/10.1016/j.jembe.2014.05.011
- Lee, S. Y., Jeong, H. J. & Lajeunesse, T. C. 2020. Cladocopium infistulum sp. nov. (Dinophyceae), a thermally tolerant dinoflagellate symbiotic with giant clams from the western Pacific Ocean. Phycologia 59:515-526. doi.org/10.1080/00318884.2020.1807741
- Liao, J., Fei, Z., Wan, M., Bai, W. & Li, Y. 2023. Effects of shear stress and shear protectants on heterotrophic culture of Haematococcus pluvialis. Algal Res. 69:102936. doi.org/10.1016/j.algal.2022.102936
- Lim, A. S., Jeong, H. J., Kim, S. J. & Ok, J. H. 2018. Amino acids profiles of six dinoflagellate species belonging to diverse families: possible use as animal feeds in aquaculture. Algae 33:279-290. doi.org/10.4490/algae.2018.33.9.10
- Lim, A. S., Jeong, H. J., You, J. H. & Park, S. A. 2020. Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production. Algae 35:277-292. doi.org/10.4490/algae.2020.35.9.2
- Manirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y. & Jing, K. 2016. Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J. 109:282-296. doi.org/10.1016/j.bej.2016.01.025
- Martins, D. A., Custodio, L., Barreira, L., Pereira, H., Ben-Hamadou, R., Varela, J., et al. 2013. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar. Drugs 11:2259-2281. doi.org/10.3390/md11072259
- Najjar, Y. S. H. & Abu-Shamleh, A. 2020. Harvesting of microalgae by centrifugation for biodiesel production: a review. Algal Res. 51:102046. doi.org/10.1016/j.algal.2020.102046
- Ok, J. H., Jeong, H. J., Kang, H. C., Park, S. A., Eom, S. H., You, J. H., et al. 2021. Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates. Algae 36:263-283. doi.org/10.4490/algae.2021.36.11.28
- Ok, J. H., Jeong, H. J., You, J. H., Park, S. A., Kang, H. C., Eom, S. H., et al. 2024. Interactions between the calanoid copepod Acartia hongi and the bloom-forming dinoflagellates Karenia bicuneiformis and K. selliformis. Mar. Biol. 171:112. doi.org/10.1007/s00227-024-04427-0
- Parker, N. S., Negri, A. P., Frampton, D. M. F., Rodolfi, L., Tredici, M. R. & Blackburn, S. I. 2002. Growth of the toxic dinoflagellate Alexandrium minutum (Dinophyceae) using high biomass culture systems. J. Appl. Phycol. 14:313-324. doi.org/10.1023/A:1022170330857
- Reyes, J. F. & Labra, C. 2016. Biomass harvesting and concentration of microalgae Scenedesmus sp. cultivated in a pilot phobioreactor. Biomass Bioenergy 87:78-83. doi.org/10.1016/j.biombioe.2016.02.014
- Rodriguez, J. J. G., Miron, A. S., Camacho, F. G., Garcia, M. C. C., Belarbi, E. H., Chisti, Y., et al. 2009. Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum. Biotechnol. Prog. 25:792-800. doi.org/10.1002/btpr.161
- Singh, G. & Patidar, S. K. 2018. Microalgae harvesting techniques: a review. J. Environ. Manag. 217:499-508. doi.org/10.1016/j.jenvman.2018.04.010
- Sournia, A. 1978. Phytoplankton manual: monographs on oceanographic methodology. UNESCO, Paris, 337 pp.
- Szepessy, S. & Thorwid, P. 2018. Low energy consumption of high-speed centrifuges. Chem. Eng. Technol. 41:2375-2384. doi.org/10.1002/ceat.201800292
- Thanh, N. T., Uemura, Y., Osman, N. & Ismail, L. 2015. The effect of aeration rate on the growth of Scenedesmus quadricauda in column photobioreactor. J. Jpn. Inst. Energy 94:177-180. https://doi.org/10.3775/jie.94.177
- Thompson, P. A., Guo, M.-X., Harrison, P. J. & Whyte, J. N. C. 1992. Effects of variation in temperature. II. On the fatty acid composition of eight species of marine phytoplankton. J. Phycol. 28:488-497. doi.org/10.1111/j.0022-3646.1992.00488.x
- Vega-Estrada, J., Montes-Horcasitas, M. C., DominguezBocanegra, A. R. & Canizares-Villanueva, R. O. 2005. Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage. Appl. Microbiol. Biotechnol. 68:31-35. doi.org/10.1007/s00253-004-1863-4
- Vidyarathna, N. K., Fiori, E., Lundgren, V. M. & Graneli, E. 2014. The effects of aeration on growth and toxicity of Prymnesium parvum grown with and without algal prey. Harmful Algae 39:55-63. doi.org/10.1016/j.hal.2014.06.010
- Wang, C. & Lan, C. Q. 2018. Effects of shear stress on microalgae: a review. Biotechnol. Adv. 36:986-1002. doi.org/10.1016/j.biotechadv.2018.03.001
- Wang, Z., Xie, C., Zhang, J., Ji, S., Zhao, J. & Nie, X. 2022. The responses of Scrippsiella acuminata to the stresses of darkness: antioxidant activities and formation of pellicle cysts. Harmful Algae 115:102239. doi.org/10.1016/j.hal.2022.102239
- Wynn, J., Behrens, P., Sundararajan, A., Hansen, J. & Apt, K. 2010. Production of single cell oils by dinoflagellates. In Cohen, Z. & Ratledghe, C. (Eds.) Single Cell Oils: Microbial and Algal Oils. AOCS Press, Champaign, IL, pp. 115-129.
- Xie, Y., Li, J., Ho, S.-H., Ma, R., Shi, X., Liu, L., et al. 2020. Pilot-scale cultivation of Chlorella sorokiniana FZU60 with a mixotrophy/photoautotrophy two-stage strategy for efficient lutein production. Bioresour. Technol. 314:123767. doi.org/10.1016/j.biortech.2020.123767
- You, J. H., Jeong, H. J., Kang, H. C., Ok, J. H., Park, S. A. & Lim, A. S. 2020a. Feeding by common heterotrophic protist predators on seven Prorocentrum species. Algae 35:61-78. doi.org/10.4490/algae.2020.35.2.28
- You, J. H., Jeong, H. J., Lim, A. S., Ok, J. H. & Kang, H. C. 2020b. Effects of irradiance and temperature on the growth and feeding of the obligate mixotrophic dinoflagellate Gymnodinium smaydae. Mar. Biol. 167:64. doi.org/10.1007/s00227-020-3678-y
- You, J. H., Jeong, H. J., Park, S. A., Ok, J. H., Kang, H. C., Eom, S. H., et al. 2022. Development of an automatic system for cultivating the bioluminescent heterotrophic dinoflagellate Noctiluca scintillans on a 100-liter scale. Algae 37:149-161. doi.org/10.4490/algae.2022.37.6.8