DOI QR코드

DOI QR Code

Effects of aeration and centrifugation conditions on omega-3 fatty acid production by the mixotrophic dinoflagellate Gymnodinium smaydae in a semi-continuous cultivation system on a pilot scale

  • Ji Hyun You (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Hae Jin Jeong (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Sang Ah Park (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Se Hee Eom (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Hee Chang Kang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jin Hee Ok (Department of Marine Sciences and Convergent Engineering, College of Marine Sciences and Convergence Engineering, Hanyang University ERICA)
  • Received : 2024.05.05
  • Accepted : 2024.06.07
  • Published : 2024.06.19

Abstract

High production and efficient harvesting of microalgae containing high omega-3 levels are critical concerns for industrial use. Aeration can elevate production of some microalgae by providing CO2 and O2. However, it may lower the production of others by generating shear stress, causing severe cell damage. The mixotrophic dinoflagellate Gymnodinium smaydae is a new, promising microalga for omega-3 fatty acid production owing to its high docosahexaenoic acid content, and determining optimal conditions and methods for high omega-3 fatty acid production and efficient harvest using G. smaydae is crucial for its commercial utilization. Therefore, to determine whether continuous aeration is required, we measured densities of G. smaydae and the dinoflagellate prey Heterocapsa rotundata in a 100-L semi-continuous cultivation system under no aeration and continuous aeration conditions daily for 9 days. Furthermore, to determine the optimal conditions for harvesting through centrifugation, different rotational speeds of the continuous centrifuge and different flow rates of the pump injecting G. smaydae + H. rotundata cells into the centrifuge were tested. Under continuous aeration, G. smaydae production gradually decreased; however, without aeration, the production remained stable. Harvesting efficiency and the dry weights of omega-3 fatty acids of G. smaydae + H. rotundata cells at a rotational speed of 16,000 rpm were significantly higher than those at 2,000-8,000 rpm. However, these parameters did not significantly differ at injection pump flow rates of 1.0-4.0 L min-1. The results of the present study provide a basis for optimized production and harvest conditions for G. smaydae and other microalgae.

Keywords

Acknowledgement

This research was supported by the Useful Dinoflagellate program of Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) and the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2021M3I6A1091272; 2021R1A2C1093379; RS2023-00291696) award to HJJ.

References

  1. Abu-Shamleh, A. & Najjar, Y. S. H. 2020. Optimization of mechanical harvesting of microalgae by centrifugation for biofuels production. Biomass Bioenergy 143:105877.doi.org/10.1016/j.biombioe.2020.105877 
  2. Anderson, R. A. 2005. Algal culturing techniques. Elsevier, Oxford, 578 
  3. Atalah, E., Cruz, C. M. H., Izquierdo, M. S., Rosenlund, G., Caballero, M. J., Valencia, A., et al. 2007. Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture 270:178-185. doi.org/10.1016/j.aquaculture.2007.04.009 
  4. Barclay, W., Weaver, C., Metz, J. & Hansen, J. 2010. Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In Cohen, Z. & Ratledge, C. (Eds.) Single Cell Oils: Microbial and Algal Oils. AOCS Press, Champaign, IL, pp. 75-96. 
  5. Borowitzka, M. A. & Vonshak, A. 2017. Scaling up microalgal cultures to commercial scale. Eur. J. Phycol. 52:407-418. doi.org/10.1080/09670262.2017.1365177 
  6. Buchheim, M. A., Silver, A., Johnson, H., Portman, R. & Toomey, M. B. 2023. The description of Haematococcus privus sp. nov. (Chlorophyceae, Chlamydomonadales) from North America. Algae 38:1-22. doi.org/10.4490/algae.2023.38.3.9 
  7. Coats, D. W. 1999. Parasitic life styles of marine dinoflagellates. J. Eukaryot. Microbiol. 46:402-409. doi.org/10.1111/j.1550-7408.1999.tb04620.x 
  8. Cuellar-Bermudez, S. P., Kilimtzidi, E., Devaere, J., Goiris, K., Gonzalez-Fernandz, C., Wattiez, R., et al. 2020. Harvesting of Arthrospira platensis with helicoidal and straight trichomes using filtration and centrifugation. Sep. Sci. Technol. 55:2381-2390. doi.org/10.1080/01496395.2019.1624573 
  9. Dassey, A. J. & Theegala, C. S. 2013. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour. Technol. 128:241-245. doi.org/10.1016/j.biortech.2012.10.061 
  10. Ding, N., Li, C., Wang, T., Guo, M., Mohsin, A. & Zhang, S. 2021. Evaluation of an enclosed air-lift photobioreactor (ALPBR) for biomass and lipid biosynthesis of microalgal cells grown under fluid-induced shear stress. Biotechnol. Biotechnol. Equip. 35:139-149. doi.org/10.1080/13102818.2020.1856717 
  11. Doughman, S. D., Krupanidhi, S. & Sanjeevi, C. B. 2007. Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Curr. Diabetes Rev. 3:198-203. doi.org/10.2174/157339907781368968 
  12. Figueras, M., Olivan, M., Busquets, S., Lopez-Soriano, F. J. & Argiles, J. M. 2011. Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: improvement of the inflammatory status. Obesity 19:362-369. doi.org/10.1038/oby.2010.194 
  13. Fuentes-Grunewald, C., Garces, E., Alacid, E., Sampedro, N., Rossi, S. & Camp, J. 2012. Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters. J. Ind. Microbiol. Biotechnol. 39:207-216. doi.org/10.1007/s10295-011-1016-6 
  14. Fuentes-Grunewald, C., Garces, E., Rossi, S. & Camp, J. 2009. Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production. J. Ind. Microbiol. Biotechnol. 36:1215-1224. doi.org/10.1007/s10295-009-0602-3 
  15. Garces, R. & Mancha, M. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 211:139-143. doi.org/10.1006/abio.1993.1244 
  16. Grima, E. M., Belarbi, E.-H., Fernandez, F. G. A., Medina, A. R. & Chisti, Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20:491-515. doi.org/10.1016/S0734-9750(02)00050-2 
  17. Gudin, C. & Thepenier, C. 1986. Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Processes 6:73-110. 
  18. Guillard, R. R. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. doi.org/10.1139/m62-029 
  19. Han, F., Pei, H., Hu, W., Song, M., Ma, G. & Pei, R. 2015. Optimization and lipid production enhancement of microalgae culture by efficiently changing the conditions along with the growth-state. Energy Convers. Manag. 90:315-322. doi.org/10.1016/j.enconman.2014.11.032 
  20. Harris, W. S. 2007. Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol. Res. 55:217-223. doi.org/10.1016/j.phrs.2007.01.013 
  21. Heasman, M., Diemar, J., O'connor, W., Sushames, T. & Foul-kes, L. 2000. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs: a summary. Aquac. Res. 31:637-659. doi.org/10.1046/j.1365-2109.2000.318492.x 
  22. Heggeset, T. M. B., Ertesvag, H., Liu, B., Ellingsen, T. E., Vadstein, O. & Aasen, I. M. 2019. Lipid and DHA-production in Aurantiochytrium sp.: responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes. Sci. Rep. 9:19470. doi.org/10.1038/s41598-019-55902-4 
  23. Hodaifa, G., Martinez, M. E., Orpez, R. & Sanchez, S. 2010. Influence of hydrodynamic stress in the growth of Scenedesmus obliquus using a culture medium based on olive-mill wastewater. Chem. Eng. Process. Process Intensif. 49:1161-1168. doi.org/10.1016/j.cep.2010.08.017 
  24. Hwang, D. F. & Lu, Y. H. 2000. Influence of environmental and nutritional factors on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. Toxicon 38:1491-1503. doi.org/10.1016/S0041-0101(00)00080-5 
  25. Jang, S. H., Jeong, H. J. & Kwon, J. E. 2017. High contents of eicosapentaenoic acid and docosahexaenoic acid in the mixotrophic dinoflagellate Paragymnodinium shiwhaense and identification of putative omega-3 biosynthetic genes. Algal Res. 25:525-537. doi.org/10.1016/j.algal.2017.06.020 
  26. Japar, A. S., Azis, N. M., Takriff, M. S. & Yasin, N. H. M. 2017. Application of different techniques to harvest microalgae. Trans. Sci. Technol. 4:98-108. 
  27. Jeong, H. J., Kang, H. C., Lim, A. S., Jang, S. H., Lee, K., Lee, S. Y., et al. 2021. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 7:eabe4214. doi.org/10.1126/sciadv.abe4214 
  28. Jeong, H. J. & Lim, A. S. 2020. Method and system for continuous mass culture for mixotrophic dinoflagellates. Patent no. KR102064718B1. Korean Intellectual Property Office, Daejeon. 
  29. Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., et al. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. 109:12604-12609. doi.org/10.1073/pnas.1204302109 
  30. Jiang, J.-Q., Graham, N. J. D. & Harward, C. 1993. Comparison of polyferric sulphate with other coagulants for the removal of algae and algae-derived organic matter. Water Sci. Technol. 27:221-230. doi.org/10.2166/wst.1993.0280 
  31. Jiang, Y. & Chen, F. 2000. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. J. Am. Oil Chem. Soc. 77:613-617. doi.org/10.1007/s11746-000-0099-0 
  32. Jiang, Y., Chen, F. & Liang, S.-Z. 1999. Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem. 34:633-637. doi.org/10.1016/S0032-9592(98)00134-4 
  33. Kang, H. C., Jeong, H. J., Ok, J. H., Lim, A. S., Lee, K., You, J. H., et al. 2023. Food web structure for high carbon retention in marine plankton communities. Sci. Adv. 9:eadk0842. doi.org/10.1126/sciadv.adk0842 
  34. Kang, N. S., Jeong, H. J., Moestrup, O., Lee, S. Y., Lim, A. S., Jang, T. Y., et al. 2014. Gymnodinium smaydae n. sp., a new planktonic phototrophic dinoflagellate from the coastal waters of western Korea: morphology and molecular characterization. J. Eukaryote. Microbiol. 61:182-203. doi.org/10.1111/jeu.12098 
  35. Kim, K., Shin, H., Moon, M., Ryu, B.-G., Han, J.-I., Yang, J.-W., et al. 2015. Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101. Bioresour. Technol. 198:828-835. doi.org/10.1016/j.biortech.2015.09.103 
  36. Koletzko, B., Lien, E., Agostoni, C., Bohles, H., Campoy, C., Cetin, I., et al. 2008. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. doi.org/10.1515/JPM.2008.001 
  37. Krishnamurthy, C. K. B. & Kristrom, B. 2015. A cross-country analysis of residential electricity demand in 11 OECD-countries. Resour. Energy Econ. 39:68-88. doi.org/10.1016/j.reseneeco.2014.12.002 
  38. Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J.-H., et al. 2014. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125. doi.org/10.1016/j.jembe.2014.05.011 
  39. Lee, S. Y., Jeong, H. J. & Lajeunesse, T. C. 2020. Cladocopium infistulum sp. nov. (Dinophyceae), a thermally tolerant dinoflagellate symbiotic with giant clams from the western Pacific Ocean. Phycologia 59:515-526. doi.org/10.1080/00318884.2020.1807741 
  40. Liao, J., Fei, Z., Wan, M., Bai, W. & Li, Y. 2023. Effects of shear stress and shear protectants on heterotrophic culture of Haematococcus pluvialis. Algal Res. 69:102936. doi.org/10.1016/j.algal.2022.102936 
  41. Lim, A. S., Jeong, H. J., Kim, S. J. & Ok, J. H. 2018. Amino acids profiles of six dinoflagellate species belonging to diverse families: possible use as animal feeds in aquaculture. Algae 33:279-290. doi.org/10.4490/algae.2018.33.9.10 
  42. Lim, A. S., Jeong, H. J., You, J. H. & Park, S. A. 2020. Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production. Algae 35:277-292. doi.org/10.4490/algae.2020.35.9.2 
  43. Manirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y. & Jing, K. 2016. Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J. 109:282-296. doi.org/10.1016/j.bej.2016.01.025 
  44. Martins, D. A., Custodio, L., Barreira, L., Pereira, H., Ben-Hamadou, R., Varela, J., et al. 2013. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar. Drugs 11:2259-2281. doi.org/10.3390/md11072259 
  45. Najjar, Y. S. H. & Abu-Shamleh, A. 2020. Harvesting of microalgae by centrifugation for biodiesel production: a review. Algal Res. 51:102046. doi.org/10.1016/j.algal.2020.102046 
  46. Ok, J. H., Jeong, H. J., Kang, H. C., Park, S. A., Eom, S. H., You, J. H., et al. 2021. Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates. Algae 36:263-283. doi.org/10.4490/algae.2021.36.11.28 
  47. Ok, J. H., Jeong, H. J., You, J. H., Park, S. A., Kang, H. C., Eom, S. H., et al. 2024. Interactions between the calanoid copepod Acartia hongi and the bloom-forming dinoflagellates Karenia bicuneiformis and K. selliformis. Mar. Biol. 171:112. doi.org/10.1007/s00227-024-04427-0 
  48. Parker, N. S., Negri, A. P., Frampton, D. M. F., Rodolfi, L., Tredici, M. R. & Blackburn, S. I. 2002. Growth of the toxic dinoflagellate Alexandrium minutum (Dinophyceae) using high biomass culture systems. J. Appl. Phycol. 14:313-324. doi.org/10.1023/A:1022170330857 
  49. Reyes, J. F. & Labra, C. 2016. Biomass harvesting and concentration of microalgae Scenedesmus sp. cultivated in a pilot phobioreactor. Biomass Bioenergy 87:78-83. doi.org/10.1016/j.biombioe.2016.02.014 
  50. Rodriguez, J. J. G., Miron, A. S., Camacho, F. G., Garcia, M. C. C., Belarbi, E. H., Chisti, Y., et al. 2009. Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum. Biotechnol. Prog. 25:792-800. doi.org/10.1002/btpr.161 
  51. Singh, G. & Patidar, S. K. 2018. Microalgae harvesting techniques: a review. J. Environ. Manag. 217:499-508. doi.org/10.1016/j.jenvman.2018.04.010 
  52. Sournia, A. 1978. Phytoplankton manual: monographs on oceanographic methodology. UNESCO, Paris, 337 pp.
  53. Szepessy, S. & Thorwid, P. 2018. Low energy consumption of high-speed centrifuges. Chem. Eng. Technol. 41:2375-2384. doi.org/10.1002/ceat.201800292 
  54. Thanh, N. T., Uemura, Y., Osman, N. & Ismail, L. 2015. The effect of aeration rate on the growth of Scenedesmus quadricauda in column photobioreactor. J. Jpn. Inst. Energy 94:177-180.  https://doi.org/10.3775/jie.94.177
  55. Thompson, P. A., Guo, M.-X., Harrison, P. J. & Whyte, J. N. C. 1992. Effects of variation in temperature. II. On the fatty acid composition of eight species of marine phytoplankton. J. Phycol. 28:488-497. doi.org/10.1111/j.0022-3646.1992.00488.x 
  56. Vega-Estrada, J., Montes-Horcasitas, M. C., DominguezBocanegra, A. R. & Canizares-Villanueva, R. O. 2005. Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage. Appl. Microbiol. Biotechnol. 68:31-35. doi.org/10.1007/s00253-004-1863-4 
  57. Vidyarathna, N. K., Fiori, E., Lundgren, V. M. & Graneli, E. 2014. The effects of aeration on growth and toxicity of Prymnesium parvum grown with and without algal prey. Harmful Algae 39:55-63. doi.org/10.1016/j.hal.2014.06.010 
  58. Wang, C. & Lan, C. Q. 2018. Effects of shear stress on microalgae: a review. Biotechnol. Adv. 36:986-1002. doi.org/10.1016/j.biotechadv.2018.03.001 
  59. Wang, Z., Xie, C., Zhang, J., Ji, S., Zhao, J. & Nie, X. 2022. The responses of Scrippsiella acuminata to the stresses of darkness: antioxidant activities and formation of pellicle cysts. Harmful Algae 115:102239. doi.org/10.1016/j.hal.2022.102239 
  60. Wynn, J., Behrens, P., Sundararajan, A., Hansen, J. & Apt, K. 2010. Production of single cell oils by dinoflagellates. In Cohen, Z. & Ratledghe, C. (Eds.) Single Cell Oils: Microbial and Algal Oils. AOCS Press, Champaign, IL, pp. 115-129. 
  61. Xie, Y., Li, J., Ho, S.-H., Ma, R., Shi, X., Liu, L., et al. 2020. Pilot-scale cultivation of Chlorella sorokiniana FZU60 with a mixotrophy/photoautotrophy two-stage strategy for efficient lutein production. Bioresour. Technol. 314:123767. doi.org/10.1016/j.biortech.2020.123767 
  62. You, J. H., Jeong, H. J., Kang, H. C., Ok, J. H., Park, S. A. & Lim, A. S. 2020a. Feeding by common heterotrophic protist predators on seven Prorocentrum species. Algae 35:61-78. doi.org/10.4490/algae.2020.35.2.28 
  63. You, J. H., Jeong, H. J., Lim, A. S., Ok, J. H. & Kang, H. C. 2020b. Effects of irradiance and temperature on the growth and feeding of the obligate mixotrophic dinoflagellate Gymnodinium smaydae. Mar. Biol. 167:64. doi.org/10.1007/s00227-020-3678-y 
  64. You, J. H., Jeong, H. J., Park, S. A., Ok, J. H., Kang, H. C., Eom, S. H., et al. 2022. Development of an automatic system for cultivating the bioluminescent heterotrophic dinoflagellate Noctiluca scintillans on a 100-liter scale. Algae 37:149-161. doi.org/10.4490/algae.2022.37.6.8