DOI QR코드

DOI QR Code

이중 주파수 tACS를 이용한 안정상태 시각 유발 전위 반응 향상

Enhancing Multiple Steady-State Visual Evoked Potential Responses Using Dual-frequency tACS

  • 김정희 (전남대학교 바이오메디컬공학협동과정) ;
  • 김상수 (전남대학교 바이오메디컬공학협동과정) ;
  • 정영진 (전남대학교 바이오메디컬공학협동과정) ;
  • 김도원 (전남대학교 바이오메디컬공학협동과정)
  • Jeonghui Kim (Department of Biomedical Engineering, Chonnam National University) ;
  • Sang-Su Kim (Department of Biomedical Engineering, Chonnam National University) ;
  • Young-Jin Jung (Department of Biomedical Engineering, Chonnam National University) ;
  • Do-Won Kim (Department of Biomedical Engineering, Chonnam National University)
  • 투고 : 2024.04.12
  • 심사 : 2024.04.24
  • 발행 : 2024.04.30

초록

Steady-state visual evoked potential-based brain-computer interface (SSVEP-BCI) is one of the promising systems that can serve as an alternative input device due to its stable and fast performance. However, one of the major bottlenecks is that some individuals exhibit no or very low SSVEP responses to flickering stimulation, known as SSVEP illiteracy, resulting in low performance on SSVEP-BCIs. However, a lengthy duration is required to enhance multiple SSVEP responses using traditional single-frequency transcranial alternating current stimulation (tACS). This research proposes a novel approach using dual-frequency tACS (df-tACS) to potentially enhance SSVEP by targeting the two frequencies with the lowest signal-to-noise ratio (SNR) for each participant. Seven participants (five males, average age: 24.42) were exposed to flickering checkerboard stimuli at six frequencies to determine the weakest SNR frequencies. These frequencies were then simultaneously stimulated using df-tACS for 20 minutes, and the experiment was repeated to evaluate changes in SSVEP responses. The results showed that df-tACS effectively enhances the SNR at each targeted frequency, suggesting it can selectively improve target frequency responses. The study supports df-tACS as a more efficient solution for SSVEP illiteracy, proposing further exploration into multi-frequency tACS that could stimulate more than two frequencies, thereby expanding the potential of SSVEP-BCIs.

키워드

과제정보

본 연구는 2023년도 식품의약품안전처의 재원으로 식·의약 안전기술 연구개발사업(RS-2023-00215716)과 2023년도 전라남도 재원으로 전남인재평생교육진흥원 지원을 받아 수행됨.

참고문헌

  1. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G,Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol, 2002;113(6):767-791. 
  2. Im CH. "Introduction to EEG-Based Brain-Computer Interface (BCI) Technology. J Biomed Eng Res, 2010;31(1):1-13. 
  3. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML,Schwartz AB. High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet, 2013; 381(9866):557-564. 
  4. Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski D,Vaughan T. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol, 2008;119(8):1909-1916. 
  5. https://www.biopac.com/events/cognixion-wearable-bci/ Accessed on 1 Mar 2024. 
  6. Hwang H-J, Kim S, Choi S,Im C-H. EEG-based brain-computer interfaces: a thorough literature survey. Int J Hum Comput, 2013;29(12):814-826. 
  7. Ramadan RA,Vasilakos AV. Brain computer interface: control signals review. Neurocomputing, 2017;223:26-44. 
  8. Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N,Kubler A. An auditory brain-computer interface (BCI). J Neurosci Methods, 2008;167(1):43-50. 
  9. Kim D-W, Lee J-C, Park Y-M, Kim I-Y,Im C-H. Auditory brain-computer interfaces (BCIs) and their practical applications. Biomed Eng Lett, 2012;2:13-17. 
  10. Brouwer A-M,Van Erp JB. A tactile P300 brain-computer interface. Front Neurol, 2010;4:1440. 
  11. Herweg A, Gutzeit J, Kleih S,Kubler A. Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation. Biol Psychol, 2016;121:117-124. 
  12. Diez PF, Mut VA, Avila Perona EM,Laciar Leber E. Asynchronous BCI control using high-frequency SSVEP. J Neuroeng Rehabil, 2011;8:1-9. 
  13. Muller-Putz GR, Scherer R, Brauneis C,Pfurtscheller G. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng, 2005;2(4):123-130. 
  14. Wu Z, Lai Y, Xia Y, Wu D,Yao D. Stimulator selection in SSVEP-based BCI. Med Eng Phys, 2008;30(8):1079-1088. 
  15. Norcia AM, Appelbaum LG, Ales JM, Cottereau BR,Rossion B. The steady-state visual evoked potential in vision research: A review. J Vis, 2015;15(6):1-46. 
  16. Vialatte F-B, Maurice M, Dauwels J,Cichocki A. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol, 2010;90(4):418-438. 
  17. Edlinger G, Allison BZ,Guger C. How many people can use a BCI system? In: Kansaku K, Cohen LG, Birbaumer N. Clinical Systems Neuroscience, Tokyo:Springer Tokyo, 2015;33-66. 
  18. Allison BZ, Neuper C. Could anyone use a BCI? In: Tan DS, Nijholt A. Brain-computer interfaces: Applying our Minds to Human-Computer Interaction, London:Springer London, 2010;35-54. 
  19. Volosyak I, Valbuena D, Luth T, Malechka T,Graser A. BCI demographics II: How many (and what kinds of) people can use a high-frequency SSVEP BCI? IEEE Trans Neural Syst Rehab Eng, 2011;19(3):232-239. 
  20. Gembler F, Stawicki P,Volosyak I. Autonomous parameter adjustment for SSVEP-based BCIs with a novel BCI wizard. Front Neurosci, 2015;9:155623. 
  21. Wang M, Daly I, Allison BZ, Jin J, Zhang Y, Chen L,Wang X. A new hybrid BCI paradigm based on P300 and SSVEP. J Neurosci Methods, 2015;244:16-25. 
  22. Zhang S, Gao X, Cui H,Chen X. Transcranial direct current stimulation-based neuromodulation improves the performance of brain-computer interfaces based on steady-state visual evoked potential. IEEE Trans Neural Syst Rehab Eng, 2023;31:1364-1373. 
  23. Reed T,Cohen Kadosh R. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J Inherited Metab Dis, 2018;41:1123-1130. 
  24. Fertonani A,Miniussi C. Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist, 2017;23(2):109-123. 
  25. Yavari F, Jamil A, Samani MM, Vidor LP,Nitsche MA. Basic and functional effects of transcranial Electrical Stimulation (tES)-An introduction. Neurosci Biobehav Rev, 2018;85:81-92. 
  26. Liu B, Yan X, Chen X, Wang Y,Gao X. tACS facilitates flickering driving by boosting steady-state visual evoked potentials. J Neural Eng, 2021;18(6):066042. 
  27. Kasten FH, Dowsett J,Herrmann CS. Sustained aftereffect of α-tACS lasts up to 70 min after stimulation. Front Hum Neurosci, 2016;10:245. 
  28. Neuling T, Wagner S, Wolters CH, Zaehle T,Herrmann CS. Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front Psychiatry, 2012;3:25619. 
  29. Antal A, Kincses TZ, Nitsche MA, Bartfai O,Paulus W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci, 2004;45(2):702-707. 
  30. Lin J, Liang L, Han X, Yang C, Chen X,Gao X. Cross-target transfer algorithm based on the volterra model of SSVEP-BCI. Tsinghua Sci Technol, 2021;26(4):505-522. 
  31. Chen X, Liu B, Wang Y,Gao X. A spectrally-dense encoding method for designing a high-speed SSVEP-BCI with 120 stimuli. IEEE T Neur Sys Reh, 2022;30:2764-2772. 
  32. Na R, Hu C, Sun Y, Wang S, Zhang S, Han M, Yin W, Zhang J, Chen X,Zheng D. An embedded lightweight SSVEP-BCI electric wheelchair with hybrid stimulator. Digit Signal Process, 2021;116:103101. 
  33. Kim D-W, Kim E, Lee C,Im C-H. Can anodal transcranial direct current stimulation increase steady-state visual evoked potential responses? J Korean Med Sci, 2019;34(43):e285. 
  34. Neuling T, Rach S,Herrmann CS. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci, 2013;7:161. 
  35. Vosskuhl J, Huster RJ,Herrmann CS. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Front Hum Neurosci, 2015;9:257. 
  36. Cao T, Wan F, Wong CM, da Cruz JN,Hu Y. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces. Biomed Eng Online, 2014;13:1-13. 
  37. Toffanin P, de Jong R, Johnson A, Martens S. Using frequency tagging to quantify attentional deployment in a visual divided attention task. Int J Psychophysiol, 2009;72(3):289-298 
  38. Joon Kim Y, Grabowecky M, Paller KA, Muthu K,Suzuki S. Attention induces synchronization-based response gain in steady-state visual evoked potentials. Nat Neurosci, 2007;10(1):117-125. 
  39. Zanto TP, Jones KT, Ostrand AE, Hsu W-Y, Campusano R,Gazzaley A. Individual differences in neuroanatomy and neurophysiology predict effects of transcranial alternating current stimulation. Brain Stimul, 2021;14(5):1317-1329.