Abstract
Crew Transfer Vessels (CTVs) are primarily used for the maintenance of offshore wind farms. Despite being manually operated by professional captains and crew, collisions with other ships and marine structures still occur. To prevent this, the introduction of autonomous navigation systems to CTVs is necessary. In this study, research on the obstacle avoidance system of the autonomous navigation system for CTVs was conducted. In particular, research on obstacle avoidance simulation for CTVs using deep reinforcement learning was carried out, taking into account the currents and wind loads in offshore wind farms. For this purpose, 3 degrees of freedom ship maneuvering modeling for CTVs considering the currents and wind loads in offshore wind farms was performed, and a simulation environment for offshore wind farms was implemented to train and test the deep reinforcement learning agent. Specifically, this study conducted research on obstacle avoidance maneuvers using MATD3 within deep reinforcement learning, and as a result, it was confirmed that the model, which underwent training over 10,000 episodes, could successfully avoid both static and moving obstacles. This confirms the conclusion that the application of the methods proposed in this study can successfully facilitate obstacle avoidance for autonomous navigation CTVs within offshore wind farms.