DOI QR코드

DOI QR Code

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid

강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구

  • Dae-Weon Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering) ;
  • Soo-Hyun Ban (Samsung SDI) ;
  • Hee-Seon Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering) ;
  • Jun-Mo Ahn (Department of Mineral Resources and Energy Engineering, Junbuk University)
  • 김대원 (고등기술연구원 신소재공정센터) ;
  • 반수현 (삼성 SDI) ;
  • 김희선 (고등기술연구원 신소재공정센터) ;
  • 안준모 (전북대학교 자원.에너지공학과)
  • Received : 2024.05.17
  • Accepted : 2024.06.12
  • Published : 2024.06.30

Abstract

Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.

전 세계적으로 기후변화에 따른 온실가스 규제로 전기자동차의 수요가 급증하고 있으며, 주요 부품인 전지의 수명 문제로 추후 폐전지의 발생으로 이어지게 된다. 이에 리튬이온전지 중 폐LFP(LiFePO4)전지의 양극재로부터 유가금속인 리튬을 선택적으로 선침출 및 회수하고자하였다. 이때, 일반적으로 사용되는 무기산은 독성가스 배출 또는 다량의 폐수가 발생되어 환경문제를 야기시킨다. 이를 대체하기 위하여 유기산 및 기타 침출제를 이용하여 리튬을 침출하는 연구가 수행중이며, 본 연구에서는 유기산인 메탄술폰산(Methane sulfonic acid, MSA, CH3SO3H)을 이용하여 선택적으로 선침출하였다. 리튬을 선침출하기위한 최적의 조건을 확인하기 위하여 MSA 농도, 광액농도 그리고 과산화수소 투입량을 변수로 하여 실험을 진행하였다. 본 연구를 통해 리튬은 약 100% 그리고 철 및 인 성분은 약 1% 내외로 침출되어 분리 효율 및 변수에 따른 주요 성분의 침출률을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 2023년도 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행한 연구 과제입니다(재생자원의 저탄소 산업 원료화 기술개발 사업 No. 20229A10100100).

References

  1. Ramana, C. V., Mauger, A., Gendron, F., Julien, C. M., and Zaghib, K., "Study of the Li-Insertion/Extraction Process in LiFePO4/FePO4," J. Power Sources, 187, 555-564 (2009). 
  2. Kim, D. K., Park, H. M., Jeong, Y. U., Lee, J. H., and Kim, J. J., "The Effect of Synthesis on the Electrochemical Properties of LiFePO4 for Cathode Material of Secondary Lithium Ion Batteries," J. Korean Ceramic Society, 43(2), 121-125 (2006). 
  3. Kong, M., Kim, H. S., and Gu, H. B., "Electrochemical Properties of LiFePO4 Cathode Materials for Lithium Polymer Batteries," J. KIEEME, 19(6), 519-523 (2006). 
  4. Hwang, Y. G., Kil, S. C., and Kim, J. H., "Technology Trends of Cathode Active Materials for Lithium Ion Battery," J. of Korean Inst. of Resources Recycling, 21(5), 79-87 (2012). 
  5. Koo, J., Lim, J., Kim, N., and Kim, C., "Research Trend in Olivine Structured LiMn1-xFexPO4 Cathode Materials in Li-Ion Batteries," J. of the Korean Battery Society, 3(1), 88-97 (2023). 
  6. Han, B., "EV/Bettery," Report of Eugene Investment & Securities (2023). 
  7. Natarajan, S. and Aravindan, V., "Recycling Strategies for Spent Li-Ion Battery Mixed Cathodes," ACS Energy Lett., 3(9), 2101-2103 (2018). 
  8. Chen, W. S. and Ho, H. J., "Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods," Metals, 8, 321-227 (2018). 
  9. Joo, S. Y., Kim, D. G., Byun, S. Y., Kim, Y. H., and Shim, H. W., "A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB," J. of Korean Inst. of Resources Recycling, 30(1), 44-52 (2021). 
  10. Kim, D. W., Park, J. R., Ahn, N. K., Choi, G. M., Jin, Y. H., and Yang, J. K., "A Review on the Recovery of the Lithium Carbonate Powders from Lithium Containing Substances," J. of the Korean Crystal Growth and Crystal Technology, 29(3), 91-106 (2019). 
  11. Jin, Y. H., Kim, B. R., and Kim, D. W., "Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water," Clean Technol., 27(1), 33-38 (2021). 
  12. Kim, B. R., Kim, D. W., Kim, T. H., Lee, J. W., Jung, H. C., Han, D. H., Jung, S. H., and Yang, D. H., "A study on the Synthesis of Cathode Active Material Precursor from Waste Lithium Secondary Battery," J. of the Korean Crystal Growth and Crystal Technology, 32(2), 61-67 (2022). 
  13. Jung, Y. J., Park, S. C., Kim, Y. H., Yoo, B. Y., Lee, M. S., and Son, S. H., "A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batteries Cell Powder," J. of Korean Inst. of Resources Recycling, 30(6), 45-52 (2021). 
  14. Park, E., Han, C., Son, S. H., Lee, M. S., and Kim, Y. H., "Overview on Pyrometallurgical Recycling Process of Spent Lithium-ion Battery," J. of Korean Inst. of Resources Recycling, 31(3), 27-39 (2022). 
  15. Yu, X., Yu, S., Yang, Z., Gao, H., Xu, P., Cai, G., Rose, S., Brooks, C., Liu, P., and Chen, Z., "Achieving Low-temperature Hydrothermal Relithiation by Redox Mediation for Direct Recycling of Spent Lithium-ion Battery Cathodes," Energy Storage Materials, 51, 54-62 (2022). 
  16. Moon, H. S., Song, S. J., Tran, T. T., and Lee, M. S., "Separation of Co(II), Ni(II), and Cu(II) from Sulfuric Acid Solution by Solvent Extraction," J. of Korean Inst. of Resources Recycling, 31(1), 21-28 (2022). 
  17. Yang, Y., Lei, S., Song, S., Sun, W., and Wang, L., "Stepwise Recycling of Valuable Metals from Ni-rich Cathode Material of Spent Lithium-ion Batteries," Waste Management, 102, 131-138 (2020). 
  18. Wu, J., Zheng, M., Liu, T., Wang, Y., Liu, Y., Nai, J., Zhang, L., Zhang, S., and Tao, X., "Direct Recovery: A Sustainable Recycling Technology for Spent Lithium-ion Battery," Energy Storage Materials, 54, 120-134 (2023). 
  19. Nshizirungu, T., Rana, M., Jo, Y. T., and Park, J. H., "Recycling of NCM Cathode Material from Spent Lithium-Ion Batteries via Polyvinyl Chloride and Chlorinated Polyvinyl Chloride in Subcritical Water: A Comparative Study," J. of Hazardous Materials, 414, 125575-125586 (2021). 
  20. Eom, Y., Alorro, R. D., Gamutan, J., and Nikoloski, A. N., "Lithium Extraction from Spent Lithium-Ion Batteries (LIBs) Using Mechanochemical Process: A Comprehensive Review," J. of Korean Inst. of Resources Recycling, 32(5) 3-17 (2023). 
  21. Liu, K., Wang, M., Zhang, Q., Xu, Z., Labianca, C., Komarek, M., Gao, B., and Tsang, D., "A Perspective on the Recovery Mechanisms of Spent Lithium Iron Phosphate Cathode Materials in Different Oxidation Environments," J. of Hazardous Materials, 445, 130502-130512 (2023). 
  22. Kim, H. S., Kim, D. W., Jang, D. H., Kim, B. R., Jin, Y. H., Chae, B. M., and Lee, S. W., "A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-based Oxidizing Agents from Waste LiFePO4 Cathode," J. of Korean Inst. of Resources Recycling, 31(4), 40-48 (2022). 
  23. Kim, H. S., Kim, D. W., Chae, B. M., and Lee, S. W., "A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder," J. of Korean Inst. of Resources Recycling, 32(3), 9-17 (2023). 
  24. Kim, H. S., Kim, B. R., and Kim, D. W., "Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials," Clean Technol., 30(1), 28-36 (2024). 
  25. Zheng, R., Zhao, L., Wang, W., Liu, Y., Ma, Q., Mu, D., Li, R., and Dai, C., "Optimized Li and Fe Recovery from Spent Lithium-Ion Batteries via a Solution-Precipitation Method," RSC Adv., 6, 43613-43625 (2016). 
  26. Cai, G., Fung, K., Ng, K., and Wibowo, C., "Process Development for the Recycle of Spent Lithium Ion Batteries by Chemical Precipitation," Ind. Eng. Chem. Res., 53(47), 18245-18259 (2014). 
  27. Yang, Y., Zheng, X., Cao, H., Zhao, C., Lin, X., Ning, P., Zhang, Y., Jin, W., and Sun, Z., "A Closed-Loop Process for Selective Metal Recovery from Spent Lithium Iron Phosphate Batteries through Mechanochemical Activation," ACS Sustain. Chem., 5, 9972-9980 (2017). 
  28. Bian, D., Sun, Y., Li, S., Tian, Y., Yang, Z., and Fan, X., "A Novel Process to Recycle Spent LiFePO4 for Synthesizing LiFePO4/C Hierarchical Microflowers," Electrochimica Acta, 190, 134-140 (2016). 
  29. Shin, E., Kim, S., Noh, J., Byun, D., Chung, K., Kim, H., and Cho, B., "A Green Recycling Process Designed for LiFePO4 Cathode Materials for Li-Ion Batteries," J. Mater. Chem. A, 3(21), 11493-11502 (2015). 
  30. Li, H., Xing, S., Liu, Y., Li, F., Guo, H., and Kuang, G., "Recovery of Lithium, Iron, and Phosphorus from Spent LiFePO4 Batteries Using Stoichiometric Sulfuric Acid Leaching System," ACS Sustain. Chem. Eng., 5, 8017-8024 (2017). 
  31. Kim, D. W. and Kim, H. S., "Efficient Selective Recovery of Lithium from Waste LiFePO4 Cathode Materials using Low Concentration Sulfuric Solution and 2-step Leaching Method," Clean Technol., 29(2), 87-94 (2023). 
  32. Mahandra, H. and Ghahreman, A., "A Sustainable Process for Selective Recovery of Lithium as Lithium Phosphate from Spent LiFePO4 Batteries," Resour. Conserv. Recycling, 175, 105883-105894 (2021). 
  33. Kumar, J., Shen, X., Li, B., Liu, H., and Zhao, J., "Selective Recovery of Li and FePO4 from Spent LiFePO4 Cathode Scraps by Organic Acids and the Properties of the Regenerated LiFePO4," Waste Management, 113, 32-40 (2020). 
  34. Li, L., Bian, Y., Zhang, X., Yao, Y., Fan, E., Wu, F., and Chen, R., "A Green and Effective Room-Temperature Recycling Process of LiFePO4 Cathode Materials for Lithium-Ion Batteries," Waste Management, 85, 437-444 (2019). 
  35. Yang, Y., Meng, X., Cao, H., Liu, C., Zhang, Y., and Sun, Z., "Selective Recovery of Lithium from Spent Lithium Iron Phosphate Batteries: A Sustainable Process," Green Chem., 20(13), 3121-3133 (2018). 
  36. Fan, E., Li, L., Zhang, X., Bian, Y., Xue, Q., Wu, J., Wu, F., and Chen, R., "Selective Recovery of Li and Fe from Spent Lithium-Ion Batteries by an Environmentally Friendly Mechanochemical Approach," ACS Sustain. Chem. & Eng., 6(8), 11029-11035 (2018). 
  37. Tran, T. T., Moon, H. S., and Lee, M. S., "Comparison of the Chemical Reactivity between Sulfuric and Methanesulfonic Acids as a Leaching Agent," J. of Korean Inst. of Resources Recycling, 30(3), 41-46 (2021). 
  38. Jung, H., Lee, J., Song, G., Park, M., and Ahn, J., "Feasibility Study of Methanesulfonic Acid (MSA), an Alternative Lixiviant to Improve Conventional Sulfuric Acid Leaching of NCM Black Mass," Resources Recycling, 33(1), 58-68 (2024). 
  39. Yadav, P., Jie, C. J., Tan, S., and Srinivasan, M., "Recycling of Cathode from Spent Lithium Iron Phosphate Batteries," J. of Hazardous Materials, 399, 123068-123078 (2020). 
  40. Wang, B., Lin, X., Tang, Y., Wang, Q., Leung, M., and Lu, X., "Recycling LiCoO2 with Methanesulfonic Acid for Regeneration of Lithium-Ion Battery Electrode Materials," J. of Power Sources, 436, 226828-226837 (2019). 
  41. Kim, B. R., Kim, H. S., and Kim, D. W., "Selective Recovery of Lithium from the Spent LFP Cathode Materials by Mechanochemical Method," J. of Korean Inst. of Resources Recycling, 32(4), 47-54 (2023).