DOI QR코드

DOI QR Code

청각 연구에서 기능적 뇌 영상 기술 적용에 대한 고찰: 난청을 중심으로

A review of the Implementation of Functional Brain Imaging Techniques in Auditory Research focusing on Hearing Loss

  • 설혜윤 (이화여자대학교 언어병리학과) ;
  • 신재영 (원광대학교 전자공학과)
  • Hye Yoon Seol (Department of Communication Disorders, Ewha Womans University) ;
  • Jaeyoung Shin (Department of Electronic Engineering, Wonkwang University)
  • 투고 : 2023.11.30
  • 심사 : 2024.02.02
  • 발행 : 2024.02.28

초록

Functional brain imaging techniques have been used to diagnose psychiatric disorders such as dementia, depression, and autism. Recently, these techniques have also been actively used to study hearing loss. The present study reviewed the application of the functional brain imaging techniques in auditory research, especially those focusing on hearing loss, over the past decade. EEG, fMRI, fNIRS, MEG, and PET have been utilized in auditory research, and the number of research studies using these techniques has been increasing. In particular, fMRI and EEG were the most frequently used technique in auditory research. EEG studies mostly used event-related designs to analyze the direct relationship between stimulus and the related response, and in fMRI studies, resting-state functional connectivity and block designs were utilized to analyze alterations in brain functionality in hearing-related areas. In terms of age, while studies involving children mainly focused on congenital and pre- and post-lingual hearing loss to analyze developmental characteristics with and without hearing loss, those involving adults focused on age-related hearing loss to investigate changes in the characteristics of the brain based on the presence of hearing loss and the use of a hearing device. Overall, ranging from EEG to PET, various functional brain imaging techniques have been used in auditory research, but it is difficult to perform a comprehensive analysis due to the lack of consistency in experimental designs, analysis methods, and participant characteristics. Thus, it is necessary to develop standardized research protocols to obtain high-quality clinical and research evidence.

키워드

과제정보

본 논문은 2023년 대한민국 교육부와 한국연구재단의 공동연구지원사업의 지원을 받아 수행된 연구임(NRF-2023S1A5A2A03085474).

참고문헌

  1. Alshuaib WB, Al-Kandari JM and Hasan SM. Classification of hearing loss. Update On Hearing Loss. 2015;4:29-37. https://doi.org/10.5772/61835
  2. Tognola G, Mainardi A, Vincenti V and Cuda D. Benefit of hearing aid use in the elderly: the impact of age, cognition and hearing impairment. Acta Otorhinolaryngologica Italica. 2019;39(6):409-418. https://doi.org/10.14639/0392-100X-2165
  3. Li-Korotky H-S. Age-Related Hearing Loss: Quality of Care for Quality of Life. The Gerontologist. 2012;52(2):265-271. https://doi.org/10.1093/geront/gnr159
  4. Punch JL, Hitt R and Smith SW. Hearing loss and quality of life. Journal of Communication Disorders. 2019;78:33-45. https://doi.org/10.1016/j.jcomdis.2019.01.001
  5. Seol HY and Moon I. Hearables as a Gateway to Hearing Health Care: A Review. Clinical and Experimental Otorhinolaryngology. 2022;15(2):127-134. https://doi.org/10.21053/ceo.2021.01662
  6. Devis T and Manuel M. A low-complexity 3-level filter bank design for effective restoration of audibility in digital hearing aids. Biomedical Engineering Letters. 2020;10(4):593-601. https://doi.org/10.1007/s13534-020-00167-4
  7. Cho K, Nam KW, Lee JC, Hong SH, Kwon SY, Han J, Kim D, Lee S and Kim IY. A comparison of frequency-invariant beamforming algorithms for hearing aids: Differential microphone-based beamformers and the broadband beamformer. Biomedical Engineering Letters. 2014;4(2):166-175. https://doi.org/10.1007/s13534-014-0131-5
  8. Kim HP, Han JH, Kwon SY, Lee SM, Kim DW, Hong SH, Kim IY and Kim SI. Sensitivity enhancement of speech perception in noise by sound training: Hearing loss simulation study. Biomedical Engineering Letters. 2011;1(2):137-142. https://doi.org/10.1007/s13534-011-0022-y
  9. Neto FSD and Rosa JLG. Depression biomarkers using non-invasive EEG: A review. Neuroscience and Biobehavioral Reviews. 2019;105:83-93. https://doi.org/10.1016/j.neubiorev.2019.07.021
  10. Groenewold NA, Opmeer EM, de Jonge P, Aleman A and Costafreda SG. Emotional valence modulates brain functional abnormalities in depression: Evidence from a meta-analysis of fMRI studies. Neuroscience and Biobehavioral Reviews. 2013;37(2):152-163. https://doi.org/10.1016/j.neubiorev.2012.11.015
  11. Wang J, Barstein J, Ethridge LE, Mosconi MW, Takarae Y and Sweeney JA. Resting state EEG abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders. 2013;5.
  12. Torres-Simon L, Doval S, Nebreda A, Llinas SJ, Marsh EB and Maestu F. Understanding brain function in vascular cognitive impairment and dementia with EEG and MEG: A systematic review. Neuroimage-Clinical. 2022;35.
  13. Huettel SA, Song AW and McCarthy G. Functional magnetic resonance imaging 3rd. Sunderland, MA: Sinauer Associates; 2014.
  14. Niedermeyer E and da Silva FL. EEG: Basic Principles, Clinical Applications, and Related Fields Philadelphia, PA: Lippincott Williams & Wilkins; 2005.
  15. Hamalainen M, Hari R, Ilmoniemi RJ, Knuutila J and Lounasmaa OV. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of modern Physics. 1993;65(2):413.
  16. Ferrari M and Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921-935. https://doi.org/10.1016/j.neuroimage.2012.03.049
  17. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(16):9226-9233. https://doi.org/10.1073/pnas.97.16.9226
  18. Lee HJ. Functional Neuroimaging in Neuro-otology. Korean J Otorhinolaryngol-Head Neck Surg. 2008;51(4):302-311.
  19. Fullerton AM, Vickers DA, Luke R, Billing AN, McAlpine D, Hernandez-Perez H, Peelle JE, Monaghan JJM and McMahon CM. Cross-modal functional connectivity supports speech understanding in cochlear implant users. Cerebral Cortex. 2023;33(7):3350-3371. https://doi.org/10.1093/cercor/bhac277
  20. Wang Y, Liu L, Zhang Y, Wei C, Xin T, He Q, Hou X and Liu Y. The Neural Processing of Vocal Emotion After Hearing Reconstruction in Prelingual Deaf Children: A Functional Near-Infrared Spectroscopy Brain Imaging Study. Front Neurosci. 2021;15:705741.
  21. Wang YY, Wu MY, Wu K, Liu HT, Wu SN, Zhang ZK, Liu M, Wei CG, Zhang YX and Liu YH. Differential auditory cortical development in left and right cochlear implanted children. Cerebral Cortex. 2022;32(23):5438-5454. https://doi.org/10.1093/cercor/bhac025
  22. Liu YD, Li H, Zhou X, Chen YR, Wang XT, Lin ZH, Niu HJ and Liu HH. Functional connectivity changes in infants with varying degrees of unilateral hearing loss. Cerebral Cortex. 2023;33(14):9165-9174. https://doi.org/10.1093/cercor/bhad192
  23. Li LPH, Chen KC, Lee PL, Niddam DM, Cheng CM, Chou CC, Hsieh JC and Shiao AS. Neuromagnetic index of hemispheric asymmetry predicting long-term outcome in sudden hearing loss. Neuroimage. 2013;64:356-364. https://doi.org/10.1016/j.neuroimage.2012.09.002
  24. Shang YY, Hinkley LB, Cai C, Subramaniam K, Chang YS, Owen JP, Garrett C, Mizuiri D, Mukherjee P, Nagarajan SS and Cheung SW. Functional and Structural Brain Plasticity in Adult Onset Single-Sided Deafness. Frontiers in Human Neuroscience. 2018;12.
  25. Presacco A, Simon JZ and Anderson S. Speech-in-noise representation in the aging midbrain and cortex: Effects of hearing loss. PLoS One. 2019;14(3):e0213899.
  26. Heinrichs-Graham E, Walker EA, Taylor BK, Menting SC, Eastman JA, Frenzel MR and McCreery RW. Auditory experience modulates fronto-parietal theta activity serving fluid intelligence. Brain Commun. 2022;4(2):fcac093.
  27. Heinrichs-Graham E, Walker EA, Lee WH, Benavente AA and McCreery RW. Somatosensory gating is related to behavioral and verbal outcomes in children with mild-to-severe hearing loss. Cerebral Cortex. 2023;33(9):5228-5237. https://doi.org/10.1093/cercor/bhac412
  28. Han JH, Lee HJ, Kang H, Oh SH and Lee DS. Brain Plasticity Can Predict the Cochlear Implant Outcome in Adult-Onset Deafness. Frontiers in Human Neuroscience. 2019;13.
  29. Karoui C, Strelnikov K, Payoux P, Salabert AS, James CJ, Deguine O, Barone P and Marx M. Auditory cortical plasticity after cochlear implantation in asymmetric hearing loss is related to spatial hearing: a PET H2 15O study. Cerebral Cortex. 2023;33(5):2229-2244. https://doi.org/10.1093/cercor/bhac204
  30. Song JJ, Lee HJ, Kang H, Lee DS, Chang SO and Oh SH. Effects of congruent and incongruent visual cues on speech perception and brain activity in cochlear implant users. Brain Structure & Function. 2015;220(2):1109-1125.
  31. Strelnikov K, Rouger J, Lagleyre S, Fraysse B, Demonet JF, Deguine O and Barone P. Increased audiovisual integration in cochlear-implanted deaf patients: independent components analysis of longitudinal positron emission tomography data. European Journal of Neuroscience. 2015;41(5):677-685. https://doi.org/10.1111/ejn.12827
  32. Verger A, Roman S, Chaudat RM, Felician O, Ceccaldi M, Didic M and Guedj E. Changes of metabolism and functional connectivity in late-onset deafness: Evidence from cerebral 18F-FDG-PET. Hearing Research. 2017;353:8-16. https://doi.org/10.1016/j.heares.2017.07.011
  33. Cui WZ, Wang SS, Chen BY and Fan GG. Altered Functional Network in Infants With Profound Bilateral Congenital Sensorineural Hearing Loss: A Graph Theory Analysis. Frontiers in Neuroscience. 2022;15.
  34. Li JH, Men WW, Gao JH, Wang Y, Qu XX, Zhu DCD and Xian JF. Functional connectivity alteration of the deprived auditory regions with cognitive networks in deaf and inattentive adolescents. Brain Imaging and Behavior. 2022;16(2):939-954. https://doi.org/10.1007/s11682-022-00632-x
  35. Wang SS, Chen BY, Yu YL, Yang HG, Cui WZ, Li J and Fan GG. Alterations of structural and functional connectivity in profound sensorineural hearing loss infants within an early sensitive period: A combined DTI and fMRI study. Developmental Cognitive Neuroscience. 2019;38.
  36. Li Q, Guo H, Liu LH and Xia S. Changes in the functional connectivity of auditory and language-related brain regions in children with congenital severe sensorineural hearing loss: An fMRI study. Journal of Neurolinguistics. 2019;51:84-95. https://doi.org/10.1016/j.jneuroling.2019.01.005
  37. Xia S, Song TB, Che J, Li Q, Chai C, Zheng MZ and Shen W. Altered Brain Functional Activity in Infants with Congenital Bilateral Severe Sensorineural Hearing Loss: A Resting-State Functional MRI Study under Sedation. Neural Plasticity. 2017;2017.
  38. Schmithorst VJ, Plante E and Holland S. Unilateral deafness in children affects development of multi-modal modulation and default mode networks. Frontiers in Human Neuroscience. 2014;8.
  39. Wang SS, Chen BY, Yu YL, Yang HG, Cui WZ, Fan GG and Li J. Altered resting-state functional network connectivity in profound sensorineural hearing loss infants within an early sensitive period: A group ICA study. Human Brain Mapping. 2021;42(13):4314-4326. https://doi.org/10.1002/hbm.25548
  40. Xing CH, Chen YC, Tong ZP, Xu WC, Xu JJ, Yin XD, Wu YQ and Cai YX. Aberrant brain functional hubs and causal connectivity in presbycusis. Brain Imaging and Behavior. 2021;15(1):453-463. https://doi.org/10.1007/s11682-020-00386-4
  41. Zhou GP, Chen YC, Li WW, Wei HL, Yu YS, Zhou QQ, Yin XD, Tao YJ and Zhang H. Aberrant functional and effective connectivity of the frontostriatal network in unilateral acute tinnitus patients with hearing loss. Brain Imaging and Behavior. 2022;16(1):151-160. https://doi.org/10.1007/s11682-021-00486-9
  42. Hua JC, Xu XM, Xu ZG, Xue Y, Xu JJ, Hu JH, Wu YQ and Chen YC. Abnormal cerebellar network and effective connectivity in sudden and long-term sensorineural hearing loss. Frontiers in Aging Neuroscience. 2022;14.
  43. Luan Y, Wang CX, Jiao Y, Tang TY, Zhang J, Lu CQ, Salvi R and Teng GJ. Abnormal functional connectivity and degree centrality in anterior cingulate cortex in patients with long-term sensorineural hearing loss. Brain Imaging and Behavior. 2020;14(3):682-695. https://doi.org/10.1007/s11682-018-0004-0
  44. Xing CH, Chang W, Liu Y, Tong ZP, Xu XM, Yin XD, Wu YQ, Chen YC and Fang XM. Alteration in resting-state effective connectivity within the Papez circuit in Presbycusis. European Journal of Neuroscience. 2023.
  45. Chen JW, Hu B, Qin P, Gao W, Liu CC, Zi DJ, Ding XR, Yu Y, Cui GB and Lu LJ. Altered Brain Activity and Functional Connectivity in Unilateral Sudden Sensorineural Hearing Loss. Neural Plasticity. 2020;2020.
  46. Fan ZY, Fan Z, Qiu TM, Hu LX, Shi Y, Xia YM, Sun XY, Liu YJ, Li SC, Xia MR and Zhu W. Altered topological properties of the intrinsic functional brain network in patients with right-sided unilateral hearing loss caused by acoustic neuroma. Brain Imaging and Behavior. 2022;16(4):1873-1883. https://doi.org/10.1007/s11682-022-00658-1
  47. Yang M, Chen HJ, Liu B, Huang ZC, Feng Y, Li J, Chen JY, Zhang LL, Ji H, Feng X, Zhu X and Teng GJ. Brain structural and functional alterations in patients with unilateral hearing loss. Hearing Research. 2014;316:37-43. https://doi.org/10.1016/j.heares.2014.07.006
  48. Zhang GY, Yang M, Liu B, Huang ZC, Chen H, Zhang PP, Li J, Chen JY, Liu LJ, Wang J and Teng GJ. Changes in the default mode networks of individuals with long-term unilateral sensorineural hearing loss. Neuroscience. 2015;285:333-42. https://doi.org/10.1016/j.neuroscience.2014.11.034
  49. Ponticorvo S, Manara R, Cassandro E, Canna A, Scarpa A, Troisi D, Cassandro C, Cuoco S, Cappiello A, Pellecchia MT, Di Salle F and Esposito F. Cross-modal connectivity effects in age-related hearing loss. Neurobiology of Aging. 2022;111:1-13. https://doi.org/10.1016/j.neurobiolaging.2021.09.024
  50. Chen YC, Yong W, Xing CH, Feng Y, Haidari NA, Xu JJ, Gu JP, Yin XD and Wu YQ. Directed functional connectivity of the hippocampus in patients with presbycusis. Brain Imaging and Behavior. 2020;14(3):917-926. https://doi.org/10.1007/s11682-019-00162-z
  51. Xu HB, Fan WL, Zhao XY, Li J, Zhang WJ, Lei P, Liu Y, Wang HH, Cheng HM and Shi H. Disrupted functional brain connectome in unilateral sudden sensorineural hearing loss. Hearing Research. 2016;335:138-148. https://doi.org/10.1016/j.heares.2016.02.016
  52. Zhou GP, Li WW, Chen YC, Wei HL, Yu YS, Guo X, Yin XD, Tao YJ and Zhang H. Disrupted intra- and inter-network connectivity in unilateral acute tinnitus with hearing loss. Frontiers in Aging Neuroscience. 2022;14.
  53. Yong W, Song JJ, Xing CH, Xu JJ, Xue Y, Yin XD, Wu YQ and Chen YC. Disrupted Topological Organization of Resting-State Functional Brain Networks in Age-Related Hearing Loss. Frontiers in Aging Neuroscience. 2022;14.
  54. Xu XM, Nan Y, Tang TY, Zhang J, Lu CQ, Luan Y, Salvi R and Teng GJ. Dissociation between Cerebellar and Cerebral Neural Activities in Humans with Long-Term Bilateral Sens orineural Hearing Loss. Neural Plasticity. 2019;2019.
  55. Hong LW, Zeng QZ, Li KC, Luo X, Xu XP, Liu XC, Li ZY, Fu Y, Wang YB, Zhang TY, Chen YX, Liu ZR, Huang PY, Zhang MM and Alzheimers Dis N. Intrinsic Brain Activity of Inferior Temporal Region Increased in Prodromal Alzheimer's Disease With Hearing Loss. Frontiers in Aging Neuroscience. 2022;13.
  56. Ponticorvo S, Manara R, Pfeuffer J, Cappiello A, Cuoco S, Pellecchia MT, Troisi D, Scarpa A, Cassandro E, Di Salle F and Esposito F. Long-Range Auditory Functional Connectivity in Hearing Loss and Rehabilitation. Brain Connect. 2021;11(6):483-492. https://doi.org/10.1089/brain.2020.0814
  57. Li N, Ma W, Ren FX, Li X, Li FY, Zong W, Wu LL, Dai ZR, Hui SCN, Edden RAE, Li MW and Gao F. Neurochemical and functional reorganization of the cognitive-ear link underlies cognitive impairment in presbycusis. Neuroimage. 2023;268.
  58. Luan Y, Wang CX, Jiao Y, Tang TY, Zhang J and Teng GJ. Prefrontal-Temporal Pathway Mediates the Cross-Modal and Cognitive Reorganization in Sensorineural Hearing Loss With or Without Tinnitus: A Multimodal MRI Study. Frontiers in Neuroscience. 2019;13.
  59. Guan B, Xu YX, Chen YC, Xing CH, Xu L, Shang SA, Xu JJ, Wu YQ and Yan Q. Reorganized Brain Functional Network Topology in Presbycusis. Frontiers in Aging Neuroscience. 2022;14.
  60. Marschall TM, Curcic-Blake B, Brederoo SG, Renken RJ, Linszen MMJ, Koops S and Sommer IEC. Spontaneous brain activity underlying auditory hallucinations in the hearing-impaired. Cortex. 2021;136:1-13. https://doi.org/10.1016/j.cortex.2020.12.005
  61. Hinkley LBN, Larson PS, Sabes JH, Mizuiri D, Demopoulos C, Adams ME, Neylan TC, Hess CP, Nagarajan SS and Cheung SW. Striatal networks for tinnitus treatment targeting. Human Brain Mapping. 2022;43(2):633-646. https://doi.org/10.1002/hbm.25676
  62. Rosemann S and Thiel CM. The effect of age-related hearing loss and listening effort on resting state connectivity. Sci Rep. 2019;9(1):2337.
  63. Husain FT, Carpenter-Thompson JR and Schmidt SA. The effect of mild-to-moderate hearing loss on auditory and emotion processing networks. Front Syst Neurosci. 2014;8:10.
  64. Biswal B, Yetkin FZ, Haughton VM and Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537-41. https://doi.org/10.1002/mrm.1910340409
  65. Ma HL, Zeng TA, Jiang L, Zhang M, Li H, Su R, Wang ZX, Chen DM, Xu M, Xie WT, Dang P, Bu XO, Zhang T and Wang TZ. Altered resting-state network connectivity patterns for predicting attentional function in deaf individuals: An EEG study. Hearing Research. 2023;429.
  66. Gao MQ, Feng TC, Zhao F, Shen JX, Zheng YQ, Liang JX and Yang HD. Cognitive reserve disorder in age-related hearing loss: cognitive cortical compensatory to auditory perceptual processing. Cerebral Cortex. 2023;33(16):9616-9626. https://doi.org/10.1093/cercor/bhad230
  67. Petersen SE and Dubis JW. The mixed block/event-related design. Neuroimage. 2012;62(2):1177-1184. https://doi.org/10.1016/j.neuroimage.2011.09.084
  68. Rosemann S, Smith D, Dewenter M and Thiel CM. Age-related hearing loss influences functional connectivity of auditory cortex for the McGurk illusion. Cortex. 2020;129:266-280. https://doi.org/10.1016/j.cortex.2020.04.022
  69. Pereira-Jorge MR, Andrade KC, Palhano-Fontes FX, Diniz PRB, Sturzbecher M, Santos AC and Araujo DB. Anatomical and Functional MRI Changes after One Year of Auditory Rehabilitation with Hearing Aids. Neural Plasticity. 2018;2018.
  70. Fang Y, Chen Q, Lingnau A, Han Z and Bi Y. Areas Recruited during Action Understanding Are Not Modulated by Auditory or Sign Language Experience. Front Hum Neurosci. 2016;10:94.
  71. Li YY, Peng DL, Liu L, Booth JR and Ding GS. Brain activation during phonological and semantic processing of Chinese characters in deaf signers. Frontiers in Human Neuroscience. 2014;8.
  72. Almeida J, He D, Chen Q, Mahon BZ, Zhang F, Goncalves O F, Fang F and Bi Y. Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf. Psychol Sci. 2015;26(11):1771-82. https://doi.org/10.1177/0956797615598970
  73. Qiao YF, Li XS, Shen H, Zhang X, Sun Y, Hao WY, Guo BY, Ni DF, Gao ZQ, Guo H and Shang YY. Downward cross-modal plasticity in single-sided deafness. Neuroimage. 2019;197:608-617. https://doi.org/10.1016/j.neuroimage.2019.05.031
  74. Li Q, Xia S, Zhao F and Qi J. Functional changes in people with different hearing status and experiences of using Chinese sign language: An fMRI study. Journal of Communication Disorders. 2014;50:51-60. https://doi.org/10.1016/j.jcomdis.2014.05.001
  75. Ghazaleh N, van der Zwaag W, Clarke S, Van de Ville D, Maire R and Saenz M. High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus. Brain Topography. 2017;30(5):685-697. https://doi.org/10.1007/s10548-017-0547-1
  76. Van der Haegen L, Acke F, Vingerhoets G, Dhooge I, De Leenheer E, Cai Q and Brysbaert M. Laterality and unilateral deafness: Patients with congenital right ear deafness do not develop atypical language dominance. Neuropsychologia. 2016;93(Pt B):482-492. https://doi.org/10.1016/j.neuropsychologia.2015.10.032
  77. Whitton S, Kim JM, Scurry AN, Otto S, Zhuang XW, Cordes D and Jiang F. Multisensory temporal processing in early deaf. Neuropsychologia. 2021;163.
  78. Wang XS, Caramazza A, Peelen MV, Han ZZ and Bi YC. Reading Without Speech Sounds: VWFA and its Connectivity in the Congenitally Deaf. Cerebral Cortex. 2015;25(9):2416-2426. https://doi.org/10.1093/cercor/bhu044
  79. Pauquet J, Thiel CM, Mathys C and Rosemann S. Relationship between Memory Load and Listening Demands in Age-Related Hearing Impairment. Neural Plasticity. 2021;2021.
  80. Guerreiro MJS, Puschmann S, Eck J, Rienacker F, Van Gerven PWM and Thiel CM. The effect of hearing loss on age-related differences in neural distinctiveness. Aging, Neuropsychology, and Cognition.1-19.
  81. Wolak T, Ciesla K, Lorens A, Kochanek K, Lewandowska M, Rusiniak M, Pluta A, Wojcik J and Skarzynski H. Tonotopic organisation of the auditory cortex in sloping sensorineural hearing loss. Hearing Research. 2017;355:81-96. https://doi.org/10.1016/j.heares.2017.09.012
  82. Petersen EB, Wostmann M, Obleser J, Stenfelt S and Lunner T. Hearing loss impacts neural alpha oscillations under adverse listening conditions. Front Psychol. 2015;6:177.
  83. Gillis M, Decruy L, Vanthornhout J and Francart T. Hearing loss is associated with delayed neural responses to continuous speech. European Journal of Neuroscience. 2022;55(6):1671-1690. https://doi.org/10.1111/ejn.15644
  84. Marsella P, Scorpecci A, Vecchiato G, Colosimo A, Maglione AG and Babiloni F. Neuroelectrical imaging study of music perception by children with unilateral and bilateral cochlear implants. Cochlear Implants International. 2014;15(sup1):S68-S71. https://doi.org/10.1179/1467010014Z.000000000171
  85. Karoui C, Strelnikov K, Payoux P, Salabert AS, James CJ, Deguine O, Barone P and Marx M. Auditory cortical plasticity after cochlear implantation in asymmetric hearing loss is related to spatial hearing: a PET H2 15O study. Cerebral Cortex. 2023;33(5):2229-2244. https://doi.org/10.1093/cercor/bhac204
  86. Cai YX, Zheng YQ, Liang MJ, Zhao F, Yu GZ, Liu Y, Chen YB and Chen GS. Auditory Spatial Discrimination and the Mismatch Negativity Response in Hearing-Impaired Individuals. Plos One. 2015;10(8).
  87. Senkowski D, Pomper U, Fitzner I, Engel AK and Kral A. Beta-band activity in auditory pathways reflects speech localization and recognition in bilateral cochlear implant users. Human Brain Mapping. 2014;35(7):3107-3121. https://doi.org/10.1002/hbm.22388
  88. Gordon KA, Wong DDE and Papsin BC. Bilateral input protects the cortex from unilaterally-driven reorganization in children who are deaf. Brain. 2013;136:1609-1625. https://doi.org/10.1093/brain/awt052
  89. Xia TS, Xu GP and Mo L. Bi-lateralized Whorfian effect in color perception: Evidence from Chinese Sign Language. Journal of Neurolinguistics. 2019;49:189-201. https://doi.org/10.1016/j.jneuroling.2018.07.004
  90. Jiwani S, Papsin BC and Gordon KA. Central auditory development after long-term cochlear implant use. Clinical Neurophysiology. 2013;124(9):1868-1880. https://doi.org/10.1016/j.clinph.2013.03.023
  91. Campbell J and Sharma A. Compensatory changes in cortical resource allocation in adults with hearing loss. Frontiers in Systems Neuroscience. 2013;7:71.
  92. Easwar V, Yamazaki H, Deighton M, Papsin B and Gordon K. Cortical Processing of Level Cues for Spatial Hearing is Impaired in Children with Prelingual Deafness Despite Early Bilateral Access to Sound. Brain Topography. 2018;31(2):270-287. https://doi.org/10.1007/s10548-017-0596-5
  93. Easwar V, Yamazaki H, Deighton M, Papsin B and Gordon K. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously. Journal of Neuroscience. 2017;37(9):2349-2361. https://doi.org/10.1523/JNEUROSCI.2538-16.2017
  94. Jiwani S, Papsin BC and Gordon KA. Early Unilateral Cochlear Implantation Promotes Mature Cortical Asymmetries in Adolescents Who Are Deaf. Human Brain Mapping. 2016;37(1):135-152. https://doi.org/10.1002/hbm.23019
  95. Fuglsang SA, Marcher-Rorsted J, Dau T and Hjortkjaer J. Effects of Sensorineural Hearing Loss on Cortical Synchronization to Competing Speech during Selective Attention. Journal of Neuroscience. 2020;40(12):2562-2572. https://doi.org/10.1523/JNEUROSCI.1936-19.2020
  96. Mathew AK, Purdy SC, Welch D, Pontoppidan NH and Ronne FM. Electrophysiological and behavioural processing of complex acoustic cues. Clinical Neurophysiology. 2016;127(1):779-789. https://doi.org/10.1016/j.clinph.2015.04.002
  97. Maslin MRD, Munro KJ and El-Deredy W. Evidence for multiple mechanisms of cortical plasticity: A study of humans with late-onset profound unilateral deafness. Clinical Neurophysiology. 2013;124(7):1414-1421. https://doi.org/10.1016/j.clinph.2012.12.052
  98. Wang SJ, Li CL, Liu Y, Wang MY, Lin M, Yang L, Chen YN, Wang Y, Fu XX, Zhang X and Wang S. Features of beta-gamma phase-amplitude coupling in cochlear implant users derived from EEG. Hearing Research. 2023;428.
  99. Smieja DA, Dunkley BT, Papsin BC, Easwar V, Yamazaki H, Deighton M and Gordon KA. Interhemispheric auditory connectivity requires normal access to sound in both ears during development. Neuroimage. 2020;208:116455.
  100. Nash-Kille A and Sharma A. Inter-trial coherence as a marker of cortical phase synchrony in children with sensorineural hearing loss and auditory neuropathy spectrum disorder fitted with hearing aids and cochlear implants. Clinical Neurophysiology. 2014;125(7):1459-1470. https://doi.org/10.1016/j.clinph.2013.11.017
  101. Revuelta P, Ortiz T, Lucia MJ, Ruiz B and Sanchez-Pena JM. Limitations of Standard Accessible Captioning of Sounds and Music for Deaf and Hard of Hearing People: An EEG Study. Frontiers in Integrative Neuroscience. 2020;14.
  102. Mehrkian S, Moossavi A, Gohari N, Nazari MA, Bakhshi E and Alain C. Long latency auditory evoked potentials and object-related negativity based on harmonicity in hearing-impaired children. Neuroscience Research. 2022;178:52-59. https://doi.org/10.1016/j.neures.2022.01.001
  103. Alemei R and Lehmann A. Middle Latency Responses to Optimized Chirps in Adult Cochlear Implant Users. Journal of the American Academy of Audiology. 2019;30(5):396-405. https://doi.org/10.3766/jaaa.18014
  104. Uhler K, Hunter S and Gilley PM. Mismatched response predicts behavioral speech discrimination outcomes in infants with hearing loss and normal hearing. Infancy. 2021;26(2):327-348. https://doi.org/10.1111/infa.12386
  105. Prince P, Paul BT, Chen J, Le T, Lin V and Dimitrijevic A. Neural correlates of visual stimulus encoding and verbal working memory differ between cochlear implant users and normal-hearing controls. European Journal of Neuroscience. 2021;54(3):5016-5037. https://doi.org/10.1111/ejn.15365
  106. Bertoli S and Bodmer D. Novel sounds as a psychophysiological measure of listening effort in older listeners with and without hearing loss. Clinical Neurophysiology. 2014;125(5):1030-1041. https://doi.org/10.1016/j.clinph.2013.09.045
  107. Finke M, Buchner A, Ruigendijk E, Meyer M and Sandmann P. On the relationship between auditory cognition and speech intelligibility in cochlear implant users: An ERP study. Neuropsychologia. 2016;87:169-181. https://doi.org/10.1016/j.neuropsychologia.2016.05.019
  108. Nisha KV and Kumar UA. Pre-Attentive Neural Signatures of Auditory Spatial Processing in Listeners With Normal Hearing and Sensorineural Hearing Impairment: A Comparative Study. American Journal of Audiology. 2019;28(2):437-449. https://doi.org/10.1044/2018_AJA-IND50-18-0099
  109. Ruiz-Stovel VD, Gonzalez-Garrido AA, Gomez-Velazquez FR, Alvarado-Rodriguez FJ and Gallardo-Moreno GB. Quantitative EEG measures in profoundly deaf and normal hearing individuals while performing a vibrotactile temporal discrimination task. International Journal of Psychophysiology. 2021;166:71-82. https://doi.org/10.1016/j.ijpsycho.2021.05.007
  110. Hidalgo C, Pesnot-Lerousseau J, Marquis P, Roman S and Schon D. Rhythmic Training Improves Temporal Anticipation and Adaptation Abilities in Children With Hearing Loss During Verbal Interaction. Journal of Speech Language and Hearing Research. 2019;62(9):3234-3247. https://doi.org/10.1044/2019_JSLHR-S-18-0349
  111. Bell N, Angwin AJ, Arnott WL and Wilson WJ. Semantic processing in children with cochlear implants: Evidence from event-related potentials. Journal of Clinical and Experimental Neuropsychology. 2019;41(6):576-590. https://doi.org/10.1080/13803395.2019.1592119
  112. Chen JM, Zhao YX, Zou TM, Wen XL, Zhou XW, Yu YJ, Liu Z and Li MG. Sensorineural Hearing Loss Affects Functional Connectivity of the Auditory Cortex, Parahippocampal Gyrus and Inferior Prefrontal Gyrus in Tinnitus Patients. Frontiers in Neuroscience. 2022;16.
  113. Dai LS, Best V and Shinn-Cunningham BG. Sensorineural hearing loss degrades behavioral and physiological measures of human spatial selective auditory attention. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(14):E3286-E3295. https://doi.org/10.1073/pnas.1721226115
  114. Vavatzanidis NK, Murbe D, Friederici A and Hahne A. The Basis for Language Acquisition: Congenitally Deaf Infants Discriminate Vowel Length in the First Months after Cochlear Implantation. Journal of Cognitive Neuroscience. 2015;27(12):2427-2441. https://doi.org/10.1162/jocn_a_00868
  115. Giroud N, Lemke U, Reich P, Matthes KL and Meyer M. The impact of hearing aids and age-related hearing loss on auditory plasticity across three months - An electrical neuroimaging study. Hearing Research. 2017;353:162-175. https://doi.org/10.1016/j.heares.2017.06.012
  116. Uhlen I, Engstrom E, Kallioinen P, Nakeva von Mentzer C, Lyxell B, Sahlen B, Lindgren M and Ors M. Using a multi-feature paradigm to measure mismatch responses to minimal sound contrasts in children with cochlear implants and hearing aids. Scand J Psychol. 2017;58(5):409-421. https://doi.org/10.1111/sjop.12391
  117. Gonzalez-Garrido AA, Ruiz-Stovel VD, Gomez-Velazquez FR, Velez-Perez H, Romo-Vazquez R, Salido-Ruiz RA, Espinoza-Valdez A and Campos LR. Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals. Frontiers in Human Neuroscience. 2017;11.
  118. Decruy L, Vanthornhout J and Francart T. Hearing impairment is associated with enhanced neural tracking of the speech envelope. Hearing Research. 2020;393.
  119. Cartocci G, Scorpecci A, Borghini G, Maglione AG, Inguscio BMS, Giannantonio S, Giorgi A, Malerba P, Rossi D, Modica E, Arico P, Di Flumeri G, Marsella P and Babiloni F. EEG rhythms lateralization patterns in children with unilateral hearing loss are different from the patterns of normal hearing controls during speech-in-noise listening. Hearing Research. 2019;379:31-42. https://doi.org/10.1016/j.heares.2019.04.011
  120. Lazard DS, Lee HJ, Truy E and Giraud AL. Bilateral reorganization of posterior temporal cortices in post-lingual deafness and its relation to cochlear implant outcome. Human Brain Mapping. 2013;34(5):1208-1219. https://doi.org/10.1002/hbm.21504