DOI QR코드

DOI QR Code

Load Control between PV Power Plants and Diesel Generators

  • Mohamed Khalil Abdalla MohamedAli (International Islamic University Malaysia KULLYIAH OF ENGINEERING) ;
  • AISHA HASSAN ABDALLA HASHIM (International Islamic University Malaysia KULLYIAH OF ENGINEERING) ;
  • OTHMAN KHALIFA (International Islamic University Malaysia KULLYIAH OF ENGINEERING)
  • 투고 : 2024.06.05
  • 발행 : 2024.06.30

초록

Introducing renewable energy sources, such as wind and photovoltaic arrays, in microgrids that supply remote regions with electricity represents a significant leap in electricity generation. Combining photovoltaic panels and diesel engines is one of the most common ways to supply electricity to rural communities. Such hybrid systems can reduce the cost of electricity generation in these remote power systems because they use free energy to balance the power generated by diesel engines. However, the combination of renewable energy sources and diesel engines tends to complicate the sizing and control of the entire system due to the intermittent nature of renewable energy sources. This study sought to investigate this issue in depth. It proposes a robust hybrid controller that can be used to facilitate optimum power sharing between a PV power source and diesel generators based on the dynamics of the available PV energy at any given time. The study also describes a hybrid PV-diesel power plant's essential functional parts that produce electricity for a microgrid using a renewable energy source. Power control needs to be adjusted to reduce the cost of power generation.

키워드

참고문헌

  1. Barley CD & Winn CB. Optimal dispatch strategy in remote hybrid power systems. Solar Energy. 1996; 58(4-6): 165-179.
  2. Supriya CS & Siddarthan M. Optimization and sizing of a grid-connected hybrid PV-wind energy system. Int. J. Eng. Science & Tech. 2011; 3(5): 4296-4323.
  3. Zanarini S & Ragazzini GL. Hybrid PV-Diesel power generator: Design criteria and preliminary performance analysis. In: 16th Triennial World Congress; 2005: Prague, Czech Republic: IFAC, 2005. p. 400-405.
  4. SolarInsure. Top 5 largest solar power plants of the world [homepage on the Internet]. Costa Mesa, CA: SolarInsure; [Updated 2017 June 27; Cited 2018 July 2]. Available from: https://www.solarinsure.com/largest-solarpower-plants
  5. Ganesan S, Ramesh V, & Umashankar S. Hybrid microgrid control with PV, diesel generator, and BESS. IJRER. 2017; 7(3): 1317-23.
  6. The World Bank. Global tracking framework 2017 - Progress toward sustainable energy [homepage on the Internet]. Washington, WA: The World Bank; [Updated 2018; Cited 2018 July 2]. Available from: http://www.worldbank.org/en/topic/energy/publication/global-tracking-framework-2017
  7. Bhongade S, Tyagi B, & Gupta OH. The automatic generation control scheme, including a photovoltaic generating system for an interconnected power system. In: 17th National Power Systems Conference; 2012: Uttar Pradesh, India: BHU, 2012. p. 1-6.
  8. Kusakana K & Vermaak HJ. Hybrid diesel generator/renewable energy system performance modeling. Renewable Energy. 2014; 67(2): 97-102.
  9. Kusakana K, Vermaak HJ, & Numbi BP. Optimal sizing of a hybrid renewable energy plant using linear programming. In: IEEE PES conference and exposition; 2012: Johannesburg, South Africa.
  10. Jansen B, Roos C, & Terlaky T. Interior point methodology for linear programming: Duality, sensitivity analysis, and computational aspects. In: Frauendorfer K, Glavitsch H, & Bacher R, editors. Optimization in planning and operation of electric power systems. Heidelberg: Physica-Verlag; 1993. p. 111.
  11. Seeling-Hochmuth G. Small village hybrid system performance workshop - expert meeting. Colorado: NRE; 1996.
  12. Tina G, Gagliano S, & Raiti S. Hybrid solar/wind power system probabilistic modeling for long-term performance assessment. Solar Energy. 2006; 80(5): 578-588.
  13. Yang HX, Lu L, & Zhou W. A novel optimization sizing model for hybrid solar-wind power generation system. Solar Energy. 2007; 81(1): 76-84.
  14. Borowy BS & Salameh ZM. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Transactions on Energy Conversion. 1996; 11(2): 367-373.
  15. Ibrahim H, Lefebvre J, Methot JF, & Deschenes JS. Numerical modeling wind-diesel hybrid system: Overview of requirements, models, and software tools. In: IEEE electrical power and energy conference; 2011. p. 23-28.
  16. Zhou W, Lou C, Li Z, Lu L, & Yang H. Current status of research on optimum sizing of standalone hybrid solar-wind power generating systems. Applied Energy. 2010; 87(2): 380-389.
  17. Rao SS. Engineering optimization: Theory and practice. 4th Ed. Hoboken, NJ: Wiley; 2009.
  18. Hu Y & Solana P. Optimization of a hybrid diesel-wind power generation plant with operational options. Renewable Energy. 2013; 51(2): 364-372.
  19. Skoplaki E & Palyvos JA. On the temperature dependence of photovoltaic module electrical performance. A review of efficiency/power correlations. Solar Energy. 2009; 83(3): 614-624.
  20. Serban E & Serban H. A control strategy for a distributed power generation microgrid application with voltage and currently controlled source converter. IEEE Transactions on Power Electronics. 2010; 25(12): 2981-2992.
  21. Edomah N. Effects of voltage sags, swell, and other disturbances on electrical equipment and their economic implications. In: 20th International Conference on Electricity Distribution; 2009: Prague. p. 1-4.