DOI QR코드

DOI QR Code

Predicting Single-hole Blast-induced Fracture Zone Using Finite Element Analysis

  • Jawad Ur Rehman (Dept. of Civil and Env. Engr., Hanyang University) ;
  • Duhee Park (Dept. of Civil and Env. Engr., Hanyang University)
  • 투고 : 2024.05.21
  • 심사 : 2024.05.30
  • 발행 : 2024.07.01

초록

During the blasting process, a fracture zone is formed in the vicinity of the blast hole. Any damage that extends beyond the excavation boundary line necessitates the implementation of an additional support system to assure safety. Typically, fracture zone radius is estimated from blast hole pressure using theoretical methods due to its simplicity. However, linear charge concentration (kg/m) is used for tunnel blasting. This paper compiles Swedish experimental datasets to estimate the radius of fracture zones based on linear charge concentration. Further numerical analyses are performed in LS-DYNA for coupled single-hole blasting. The Riedel-Hiermaier-Thoma (RHT) model has been selected as the constitutive model for this investigation. The numerical model is validated against small-scale laboratory tests. Parametric studies are conducted to predict fracture zones in granite and sandstone rocks using two kinds of explosives, PETN and AFNO. The analyses evaluate ten types of blast hole sizes, ranging from 17 to 100 mm. The results indicate that granite has a larger fracture zone than sandstone, and the PETN explosive predicts more damage than ANFO. Smaller blast holes exhibit smaller fracture zones in comparison to larger blast holes. Wave propagation is more rapidly attenuated in granite than in sandstone. Subsequently, the predicted fracture zone outcomes are compared with the empirical dataset. Fracture zones of medium blast hole diameter align well with the experimental data set. A predictive equation is derived from the data set, which may be used to evaluate blast design to manage fracture zones beyond the excavation line.

키워드

과제정보

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C3003245).

참고문헌

  1. Anlaggningsama (1999), General materials and works description for construction work, section CBC. Bergschakt. Svensk Byggtjaanst: Stockholm, [in Swedish].
  2. Banadaki, M.D. and Mohanty, B. (2012), Numerical simulation of stress wave induced fractures in rock, International Journal of Impact Engineering, 40, pp. 16~25. https://doi.org/10.1016/j.ijimpeng.2011.08.010
  3. Bird, R., Paluszny, A., Thomas, R.N., and Zimmerman, R.W. (2023), Modelling of fracture intensity increase due to interacting blast waves in three-dimensional granitic rocks, International Journal of Rock Mechanics and Mining Sciences, 162, pp. 105279.
  4. Borrvall, T. and Riedel, W. (2011), The RHT concrete model in LS-DYNA, Proceedings of The 8th European LS-DYNA user conference, pp. 23~24.
  5. Dey, K. and Murthy, V. (2012), Prediction of blast-induced overbreak from uncontrolled burn-cut blasting in tunnels driven through medium rock class, Tunnelling and Underground Space Technology, 28, pp. 49~56. https://doi.org/10.1016/j.tust.2011.09.004
  6. Gharehdash, S., Barzegar, M., Palymskiy, I.B. and Fomin, P.A. (2020), Blast induced fracture modelling using smoothed particle hydrodynamics, International Journal of Impact Engineering, 135, pp. 103235.
  7. Hao, Y. and Hao, H. (2013), Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate, Rock Mechanics and Rock Engineering, 46, pp. 373-388. https://doi.org/10.1007/s00603-012-0268-4
  8. Holmberg, R. and Persson, P.-A. (1978), The Swedish approach to contour blasting, SveDeFo.
  9. Hustrulid, W.A. (1999), Blasting principles for open pit mining. Brookfield, A.A. Balkema
  10. Jayasinghe, L.B., Shang, J., Zhao, Z. and Goh, A. (2019), Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in-situ stresses and discontinuity persistence, Computers and Geotechnics, 116, pp. 103207.
  11. Jeong, H., Jeon, B., Choi, S. and Jeon, S. (2020), Fracturing behavior around a blasthole in a brittle material under blasting loading, International Journal of Impact Engineering, 140, pp. 103562.
  12. Langefors, U. (1958), Ground vibrations in blasting, Water power.
  13. Li, X., Liu, K., Qiu, T., Sha, Y., Yang, J. and Song, R. (2023), Numerical study on fracture control blasting using air-water coupling, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9, pp. 29.
  14. Li, X., Zhu, Z., Wang, M., Wan, D., Zhou, L. and Liu, R. (2021a), Numerical study on the behavior of blasting in deep rock masses, Tunnelling and Underground Space Technology, 113, pp. 103968.
  15. Li, X., Zhu, Z., Wang, M., Xiao, D., Shu, Y. and Deng, S. (2021b), Fracture mechanism of rock around a tunnel-shaped cavity with interconnected cracks under blasting stress waves, International Journal of Impact Engineering, 157, pp. 103999.
  16. Lu, W., Yang, J., Chen, M. and Zhou, C. (2011), An equivalent method for blasting vibration simulation, Simulation Modelling Practice and Theory, 19, pp. 2050~2062. https://doi.org/10.1016/j.simpat.2011.05.012
  17. Mosinets, V. and Gorbacheva, N. (1972), A seismological method of determining the parameters of the zones of deformation of rock by blasting, Soviet mining science, 8, pp. 640~647. https://doi.org/10.1007/BF02497586
  18. Olsson, M. and Bergqvist, I. (1997), Crack propagation in rock from multiple hole blasting-Summary of work during the period 1993-96. Swedish. SveBeFo Report.
  19. Ouchterlony, F. (1997), Prediction of crack lengths in rock after cautious blasting with zero inter-hole delay, Fragblast, 1, pp. 417~444. https://doi.org/10.1080/13855149709408407
  20. Ouchterlony, F., Olsson, M. and Svard, J. (2009), Crack lengths or blast damage from string emulsion and electronic detonators, International Symposium on Rock Fragmentation by Blasting: 13/09/2009-17/09/2009, CRC Press, pp. 469~480.
  21. Pusch, R. and Stanfors, R. (1992), The zone of disturbance around blasted tunnels at depth, International journal of rock mechanics and mining sciences & geomechanics abstracts, Elsevier, pp. 447~456.
  22. Sanchidrian, J.A., Castedo, R., Lopez, L.M., Segarra, P. and Santos, A.P. (2015), Determination of the JWL constants for ANFO and emulsion explosives from cylinder test data, Central European journal of energetic materials, 12, pp. 177~194.
  23. Senuk, V. (1979), The impulse from an explosion, and conditions for its greater utilization in crushing hard rock masses in blasting, Soviet mining science, 15, pp. 22~27. https://doi.org/10.1007/BF02499637
  24. Sim, Y., Cho, G.-C. and Song, K.-I. (2017), Prediction of fragmentation zone induced by blasting in rock, Rock Mechanics and Rock Engineering, 50, pp. 2177~2192. https://doi.org/10.1007/s00603-017-1210-6
  25. Sjoberg, C. (1979), Cracking zones around slender borehole charges, Proceedings of annual discussion meeting BK-79. Swedish rock construction committee, Stockholm, pp. 53~98.
  26. Sjoberg, C., Larsson, B., Lindstrom, M. and Palmqvist, K., (1997), A blasting method for controlled crack extension and safety underground. ASF project.
  27. Wang, Z., Wang, H., Wang, J. and Tian, N. (2021), Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks, Computers and Geotechnics, 135, pp. 104172.
  28. Xahykaeb, A. (1974), Physical process of rock blasting in mining, Mineral Press, Leningrad, Russia.
  29. Xie, L.X., Lu, W.B., Zhang, Q., Jiang, Q., Chen, M. and Zhao, J. (2017), Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses, Tunnelling and Underground Space Technology, 66, pp. 19~33. https://doi.org/10.1016/j.tust.2017.03.009
  30. Xu, B. and Liu, X. (1995), Applying Plasto Elasticity Mechanical, Tsinghua University Press.
  31. Yi, C., Johansson, D. and Greberg, J. (2018), Effects of in-situ stresses on the fracturing of rock by blasting, Computers and Geotechnics, 104, pp. 321~330. https://doi.org/10.1016/j.compgeo.2017.12.004
  32. Zhang, Q.B. and Zhao, J. (2014), A review of dynamic experimental techniques and mechanical behaviour of rock materials, Rock Mechanics and Rock Engineering, 47, pp. 1411~1478. https://doi.org/10.1007/s00603-013-0463-y