DOI QR코드

DOI QR Code

A Comparative Study on Mapping and Filtering Radii of Local Climate Zone in Changwon city using WUDAPT Protocol

WUDAPT 절차를 활용한 창원시의 국지기후대 제작과 필터링 반경에 따른 비교 연구

  • Tae-Gyeong KIM (Dept. of Environmental Engineering, Changwon National University) ;
  • Kyung-Hun PARK (School of Smart & Green Engineering, Changwon National University) ;
  • Bong-Geun SONG (Institute of Industrial Technology, Changwon National University) ;
  • Seoung-Hyeon KIM (Institute of Industrial Technology, Changwon National University) ;
  • Da-Eun JEONG (Dept. of Environmental Engineering, Changwon National University) ;
  • Geon-Ung PARK (Institute of Industrial Technology, Changwon National University)
  • 김태경 (창원대학교 환경공학과 ) ;
  • 박경훈 (창원대학교 스마트그린공학부) ;
  • 송봉근 (창원대학교 산업기술연구원) ;
  • 김성현 (창원대학교 산업기술연구원 ) ;
  • 정다은 (창원대학교 환경공학과) ;
  • 박건웅 (창원대학교 산업기술연구원 )
  • Received : 2024.05.13
  • Accepted : 2024.06.25
  • Published : 2024.06.30

Abstract

For the establishment and comparison of environmental plans across various domains, considering climate change and urban issues, it is crucial to build spatial data at the regional scale classified with consistent criteria. This study mapping the Local Climate Zone (LCZ) of Changwon City, where active climate and environmental research is being conducted, using the protocol suggested by the World Urban Database and Access Portal Tools (WUDAPT). Additionally, to address the fragmentation issue where some grids are classified with different climate characteristics despite being in regions with homogeneous climate traits, a filtering technique was applied, and the LCZ classification characteristics were compared according to the filtering radius. Using satellite images, ground reference data, and the supervised classification machine learning technique Random Forest, classification maps without filtering and with filtering radii of 1, 2, and 3 were produced, and their accuracies were compared. Furthermore, to compare the LCZ classification characteristics according to building types in urban areas, an urban form index used in GIS-based classification methodology was created and compared with the ranges suggested in previous studies. As a result, the overall accuracy was highest when the filtering radius was 1. When comparing the urban form index, the differences between LCZ types were minimal, and most satisfied the ranges of previous studies. However, the study identified a limitation in reflecting the height information of buildings, and it is believed that adding data to complement this would yield results with higher accuracy. The findings of this study can be used as reference material for creating fundamental spatial data for environmental research related to urban climates in South Korea.

기후변화와 도시 문제를 고려해 다양한 영역에 걸친 환경계획의 수립과 비교를 위해서는 일관된 기준으로 분류된 지역 규모 수준의 공간자료 구축이 중요하다. 본 연구는 World Urban Database and Access Portal Tools(WUDAPT)에서 제시한 절차를 사용하여 기후 및 환경 연구가 활발히 이루어지고 있는 창원시의 Local Climate Zone(LCZ)를 분류하였다. 또한, 동질적인 기후 특성을 가진 지역일지라도 일부 격자가 다른 기후 특성으로 분류되는 파편화 문제를 개선하기 위해 필터링 기법을 적용하고 필터링 반경에 따른 LCZ 분류 특성을 비교하였다. 위성영상과 지상참조자료, 감독분류 머신러닝 기법인 Random Forest를 활용하여 필터링하지 않은 분류지도와 필터링 반경이 1, 2, 3인 분류지도를 제작하여 정확도를 비교하였다. 또한, 도시지역의 건물 유형에 따른 LCZ 분류특성을 비교하기 위해 GIS를 활용한 분류방법론에서 사용되는 도시형태지수를 제작하여 선행 연구에서 제시한 범위와 비교하였다. 그 결과, 전체 정확도는 필터링 반경이 1일 때 가장 높은 값을 보였다. 도시형태지수를 비교하였을 때 LCZ 유형별 차이는 적었고 대부분 선행연구의 범위를 만족하는 것을 확인하였다. 그러나 연구 결과를 통해 건물의 높이 정보를 반영하지 못하는 한계를 확인하였고, 이를 보완할 수 있는 데이터를 추가하여 분류한다면 더 높은 정확도의 결과물을 획득할 수 있을 것이라 판단된다. 연구 결과는 국내 도시기후 관련 환경 연구분야의 기초 공간자료 제작하기 위한 참고자료로 활용될 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No.NRF-2022R1F1A1074483).

References

  1. Abougendia, S. M. 2023. Investigating surface UHI using local climate zones(LCZs), the case study of Cario's River Islands. Alexandria Engineering Journal 77(15):293-307.
  2. An, S.I., Ha, K.J., Seo, K.H., Yeh, S.W., Min, S.K., C.H. Ho.2011. A Review of Recent Climate Trends and Causes over the Korean Peninsula. The Korean Society of Climate Change Research 2(4):237-251.
  3. Bechtel, B., Alexander, P.J., Beck, C., Bohner, J., Brousse, O., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L., I. Stewart., 2015. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS International Journal of Geo-Information 4(1):199-219.
  4. Bechtel, B., Alexander, P.J., Beck, C., Bohner, J., Brousse, O., Ching, J., Demuzere, M., Fonte, C., Gal, T., Hidalgo, J., Hoffmann, P., Middel, A., Mills, G., Ren, C., See, L., Sismanidis, P., Verdonck, Xu, M., G. Y. Xu. 2019. Generating WUDAPT Level 0 data - Current status of production and evaluation. Urban Climate 27:24-45.
  5. Cao, R., Liao, C., Li, Q., Tu, W., Zhu, R., Luo, N., Qiu, G., W. Shi. 2023. Integrating satelite and street-level images for local climate zone mapping. International Journal of Applied Earth Observation and Geoinfromation 119(103323).
  6. Changwon-si. 2021. Final Report on the Planning of Urban Ecological Status Map and Wind Road Construction in Changwon City 514pp.
  7. Chen, X., Xu, Y., Yang, J., Wu, Z., H. Zhu. 2020. Remote sensing of urban thermal environments within local climate zones: A case study of two high-density subtropical Chinese cities. Urban Climate 31(100568).
  8. Demuzere, M., Hankey, S., Mills, G., Zhang, W., Lu, T., B. Bechtel. 2020. Combining expert and crowd-sourced training data to map urban form and function for the continental US. Scientific Data 7(1):264.
  9. Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D., van Vliet, J., B. Bechtel. 2022. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 14:3835-3873.
  10. Huang, F., Jiang, S., Zhan, W., Bechtel, B., Liu, Z., Demuzere, M., Huang, Y., Xu, Y., Ma, L., Xia, W., Quan, J., Jiang, L., Lai, J., Wang, C., Kong, F., Du, H. Miao, S., Chen, Y., J. Chen. 2023. Mapping local climate zones for cities:A large review. Remote Sensing of Environment 292(113573).
  11. Im, E.S., Lee, Y.J., Hwang, M.H., M.S. Cha. 2014. Development and Application of a Model for Intergrating Geospatial and Statistical Information. Korea Research Institute for Human Settlements. 112pp.
  12. IPCC. 2018. Summary for Policymakers. In: Global Warming of 1.5℃. An IPCC Special Report onthe impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhousegas emission pathways, in the context of strengthening the global response to the threat ofclimate change, sustainable development, and efforts to eradicate poverty. 32pp.
  13. Kang, S.W., Mun, H.S., Pakr, H.M., J.C. Jung. 2023. Application and Usability Analysis of Local Climate Zone using Land-Use/Land-Cover(LULC) Data. Journal of the Korea Association of Geographic Information Studies 26(1):69-88.
  14. Khamchiangta, D., Y. Yamagata. 2024. Mapping urban carbon emissions in relation to local climate zones: Case of the building sector in Bangkok Metropolitan Administration, Thailand. Energy and Built Environment 5:337-347.
  15. Kim, J.S., J.E. Kang. 2022. An Analysis of Thermal Environment Change According to Urban Development Project Using ENVI-met Model : Focused on Changwon. The Korean Society of Climate Change Research 13(5):659-677.
  16. Kim. K., J.H. Eum. Classification of Local Climate Zone by Using WUDAPT Protocol - A Case Study of Seoul, Korea-. 2017. Journal of the Korean Institute of Landscape Architecture 45(4):131-142.
  17. Kim, S. B., Kim, G. H., J.H. Cho. 2001. The Urban Heat Island Phenomenon and Potential Mitigation Strategies. Journal of Nakdonggang Environmental Research Institute 6(1):63-89.
  18. Kim, S.H., Park, K.H., Lee, S.A., B.G. Song. 2022. Analysis of Thermal Environment Characteristics by Spatial Type using UAV and ENVI-met. Journal of the Korean Association of Geographhic Information Studies 25(1):28-43.
  19. Kim, Y.J., Mun, H.S., J.C. Jung. 2023, An Exploratory Study on the Effect of LCZ Type on Particulate Matter. Korea Society of Environmental Impact Assessment 32(5) : 338-352.
  20. Lee, W.S., Jung, S.G., Park, K.H., K.T. Kim. 2010. Analysis of Urban Thermal Environment for Environment-Friendly Spatial Plan. Journal of the Korean Association of Geographhic Information Studies 13(1):142-154.
  21. Maleki, M., Asadi, M., Naghadehi, S. Z., Khosravi, A., Wang, J., Stewart, I. D., M. Shakeryati. 2023. Detecting local climate zone change and its effects on PM10 distribution using fuzzy machine learning in Tehran, Iran. Urban Climate 49(101506).
  22. National Institute of Meteorological Sciences. 2019. 100 Years of Climate Change on the Korean Peninsula. p.31.
  23. Qiu, C., Mou, L., Schmitt, M., X.X. Zhu. 2019. Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network. ISPRS Journal of Photogrammetry and Remote Sensing 154:151-162.
  24. Quan, S. J., P. Bansal. 2021, A systematic review of GIS-based local climate zone mapping studies. Building and Environment 196(107791).
  25. Ren, C., Cai, M., Li X., Zhang, L., Wang, R., Xu, Y., E. Ng. 2019. Assessment of Local Climate Zone Classification Maps of Vities in China and Feasible Refinements. Scientific Reports 9(18848).
  26. Song, B.G., K.H. Park. 2011. The Classification of Spatial Patterns Considering Formation Parameters of Urban Climate - The case of Changwon city, South Korea-. Korea Society of Environmental Impact Assessment 20(3):299-311.
  27. Song, B.G., K.H. Park. 2012. Analysis of Heat Island Characteristics Considering Urban Space at Nighttime. Journal of the Korean Association of Geographhic Information Studies 15(1):133-143.
  28. Stewart, I.D., T.R. Oke. 2012. Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society 93(12):1879-1900.
  29. Wang, R., Ren, C., Xu, Y., Lau, K., Yuan. Shi. 2018. Mapping the local climate zones of urban areas by GIS-based and WUDAPT methods: A case study of Hong Kong. Urban Climate 24:567-576.
  30. Wang, Y., Ni, Z., Hu, M., Chen, S., B. Xia. 2021. A practical approach of urban green infrastructure planning to mitigate urban overheating: A case study of Guangzhou. Journal of Cleaner Production 287(124995).
  31. Yan, L., Ma, L., He, W., Zhou, L., Lu, H., Liu, G., G. Huang. 2022. Comparing Object-Based and Pixel-Based Methods for Local Climate Zones Mapping with Multi-Source Data. remote sensing 14(15):3744.
  32. Yoo, C.H., Lee, Y.S., Cho, D.J., Im. J.H., D.H. Han. 2020. Improving Local Climate Zone Classification Using Incomplete Building Data and Sentinel 2 Images Based on Convolutional Neural Networks. Remote Sensing 12(21).
  33. Zhou, X., Okaze, T., Ren, C., Cai, M., Ishida, Y., A. Mochida. 2020. Mapping local climate zones for a Japanese large city by an extended workflow of WUDAPT Level 0 method. Urban Climate 33(100660).
  34. Zheng, Y., Ren, C., Xu, Y., Wang, R., Ho, J., Lau, K., E. Ng. 2018. GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong. Urban Climate 24:419-448.