DOI QR코드

DOI QR Code

Blockchain and AI-based big data processing techniques for sustainable agricultural environments

지속가능한 농업 환경을 위한 블록체인과 AI 기반 빅 데이터 처리 기법

  • Yoon-Su Jeong (Department of Game Software Engineering, Mokwon University)
  • 정윤수 (목원대학교 게임소프트웨어공학과)
  • Received : 2024.05.11
  • Accepted : 2024.06.20
  • Published : 2024.06.30

Abstract

Recently, as the ICT field has been used in various environments, it has become possible to analyze pests by crops, use robots when harvesting crops, and predict by big data by utilizing ICT technologies in a sustainable agricultural environment. However, in a sustainable agricultural environment, efforts to solve resource depletion, agricultural population decline, poverty increase, and environmental destruction are constantly being demanded. This paper proposes an artificial intelligence-based big data processing analysis method to reduce the production cost and increase the efficiency of crops based on a sustainable agricultural environment. The proposed technique strengthens the security and reliability of data by processing big data of crops combined with AI, and enables better decision-making and business value extraction. It can lead to innovative changes in various industries and fields and promote the development of data-oriented business models. During the experiment, the proposed technique gave an accurate answer to only a small amount of data, and at a farm site where it is difficult to tag the correct answer one by one, the performance similar to that of learning with a large amount of correct answer data (with an error rate within 0.05) was found.

최근 ICT분야가 다양한 환경에서 사용되면서 지속가능한 농업 환경에서는 ICT 기술들을 활용하여 농작물별 병충해 분석, 농작물 수확시 로봇 사용, 빅 데이터로 인한 예측 등이 가능해졌다. 그러나, 지속 가능한 농업 환경에서는 자원의 고갈, 농업 인구 감소, 빈곤 증가, 환경 파괴 등을 해결하기 위한 노력이 꾸준히 요구되고 있다. 본 연구에서는 지속 가능한 농업 환경 기반의 농작물의 생산 비용 감소 및 효율성을 증가하기 위한 인공지능 기반 빅 데이터 처리 기법을 제안한다. 제안 기법은 AI를 결합한 농작물의 빅 데이터를 처리함으로써 데이터의 보안성과 신뢰성을 강화하고, 더 나은 의사 결정과 비즈니스 가치 추출이 가능하다. 이는 다양한 산업과 분야에서 혁신적인 변화를 이끌어내고, 데이터 중심의 비즈니스 모델의 발전을 촉진할 수 있다. 실험과정에서 제안 기법은 다량의 데이터가 생성되나, 일일이 정답을 태깅하기 힘든 농장 현장에서, 소량의 데이터에 대해서만 정확한 정답을 부여하고, 정답이 부여되지 않은 다량의 데이터와 함께 학습하여, 다량의 정답 데이터로 학습했을 때와 유사한 성능(오차율:0.05 이내)이 나타났다.

Keywords

References

  1. J Wu, L. Ping, X. Ge, Y. Wang & J. Fu. (2010). [1] Wu, J., Ping, L., Ge, X., Wang, Y. and Fu, J. (2010). Cloud storage as the infrastructure of cloud computing. Proceedings of the 2010 International Conference on Intelligent Computing and Cognitive Informatics (ICICCI), 380-383. DOI : 10.1109/ICICCI.2010.119
  2. Roux, J., Escriba, C., Fourniols, J. and Soto-Romero, G. (2019). A new bi-frequency soil smart sensing moisture and salinity for connected sustainable agriculture. Journal of Sensor Technology, 9(4), 35-43. DOI : 10.4236/jst.2019.93004
  3. Nobrega, L., Goncalves, P., Pedreiras, P. and Pereira, J. (2019). An IoT-based solution for intelligent farming. Sensors, 19(3), 1-24. DOI : 10.3390/s19030603
  4. Gai, K., Qiu, M., Zhao, H., Tao, L. and Zong, Z. (2016). Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing. Journal of Network and Computer Applications, 59, 46-54. DOI : 10.1016/j.jnca.2015.05.016
  5. Lakhwani, K., Gianey, H., Agarwal, N. and Gupta, S. (2018). Development of IoT for smart agriculture a review. Emerging Trends in Expert Applications and Security, 425-432. DOI : 10.1007/978-981-13-2285-3_50
  6. Wolfert, S. and Isakhanyan, G. (2022). Sustainable agriculture by the Internet of Things-A practitioner's approach to monitor sustainability progress. Computers and Electronics in Agriculture, 200(107226), DOI : 10.1016/j.compag.2022.107226.
  7. Alreshidi, E. (2019). Smart sustainable agriculture (SSA) solution underpinned by Internet of Things (IoT) and artificial intelligence (AI). International Journal of Advanced Computer Science and Applications, 10(5), 93-102. DOI : 10.14569/IJACSA.2019.0100513
  8. Jagadale, A. A. (2022). Role of IoT and AI in agriculture technology. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), 2(2), 257-268. DOI : 10.48175/568
  9. Punjabi, H. C., Agarwal, S., Khithani, V., Muddaliar, V. and Vasmatkar, M. (2017). Smart farming using IoT. International Journal of Electronics and Communication Engineering and Technology (IJECET), 8(1), 58-66.
  10. Uddin, M. A., Mansour, A., Jeune, D. L., Ayaz, M. and Aggoune, E.-H.-M. (2018). UAV-assisted dynamic clustering of wireless sensor networks for crop health monitoring. Sensors, 18(2), 555, 1-24, DOI : 10.3390/s18020555
  11. Alam, M. and Khan, I. (2020). IoT and AI for smart and sustainable agriculture. International Conference on Computational Techniques and Intelligent Machines, 1-1.
  12. Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S. and Kaliaperumal, R. (2022). Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), 1745. DOI : 10.3390/agriculture12101745.
  13. Farooq, M. S., Riaz, S., Abid, A., Abid, K. and Naeem, M. A. (2019). A survey on the role of IoT in agriculture for the implementation of smart farming. IEEE Access, 7, 156237-156271. DOI : 10.1109/ACCESS.2019.2949703